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Abstract

Sub-wavelength light concentration by means of plasmonic nanoantennas is known to significantly

enhance the nonlinear response. In nonlinear schemes involving multiple frequencies, however, it

remains challenging to design nanoantennas that respond resonantly to more than one or eventually

to all interacting frequencies. Considering plasmonic nanowire antennas, we hereby demonstrate

the potential to engineer their resonances at more than one frequencies involved in the nonlinear

process by carefully tailoring the antenna terminations. Although we consider here the degenerate

nonlinear process of second harmonic generation, our approach can easily be extended to other

nonlinear processes.
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I. INTRODUCTION

In recent years, plasmonics has established itself as a promising route towards the nano-

scale miniaturization of optical elements1. The physical principle which plasmonics is based

on is the coupling of electromagnetic radiation to the oscillation of the charge density in

noble metals at the metal-dielectric interface2. The interest in plasmonics has spurred an

ever-growing research as well as a body of literature reporting the observation of various

optical phenomena in such systems which could be of use in integrated optics and spec-

troscopic applications, among others. The sub-wavelength confinement of light leads to

a minimization of the geometrical scale where linear effects are observed, which yields a

stronger nonlinear interaction due to the high field intensities available in the near field3.

This triggered investigations into understanding the extent to which strong field localization

can beneficially affect the nonlinear process in the face of resistive losses present in metals

(for instance, see4–9).

In general, it can be distinguished between the intrinsic and extrinsic nonlinear proper-

ties of nanooptical systems10. The intrinsic nonlinearity refers to systems where the metals

themselves are the sole source of a nonlinear polarization. This makes it possible, for ex-

ample, to observe a strong third-order nonlinear response. This allows to generate, e.g.,

a third harmonic signal upon excitation of optical nanoantennas11,12. Alternatively, at the

surface of the optical nanoantenna the mirror-symmetry of the lattice might be broken and

second-order nonlinear effects can be encountered13,14. This equally holds while discussing

the properties of metals beyond the ordinary Drude model, e.g., semi-classical hydrodynamic

model to describe the dynamics of the free electrons15–18 or considering quantum-tunneling

effects if two plasmonic elements are brought sufficiently close such that electron coupling

across the gap results in extreme non-locality19–21. Another interesting mechanism of SH

generation in centrosymmetric media is the Lorentzian interaction of electric and magnetic

field components of the modes22. On the contrary, much work was done also studying optical

nanosystems with an extrinsic nonlinearity23,24. The optical nanoantenna’s role is to localize

light into large near field intensities which causes an enhanced nonlinear response from the

surrounding nonlinear dielectric medium. Such a case is considered here without any loss of

generality.

As a general rule, the nonlinear processes involve the interaction of light oscillating at mul-
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tiple frequencies depending on the order of nonlinearity and the specific nature of interaction

under consideration. This makes it ideal, if not necessary, to have plasmonic elements that

are resonant to all the frequencies involved. Recent studies have attempted to conceive such

nanostructures by employing innovative antenna designs that afford tunability at multiple

frequencies22,25–30. Some of these approaches choose a path were a few individual nanoan-

tennas that sustain resonances at selected frequencies are fused into a single structure. This

assures the requirement of having a nanoantenna that sustains resonances at all frequencies

of interest26–28. In other approach, the geometrical features of a composite nano-particle,

whether isolated or in array, are tailored to achieve the same end by employing orthogonal

polarizations for interacting frequencies22,25. In both cases, however, it is challenging to

achieve a good spatial overlap - necessary for strong nonlinear response - among the modes

at different frequencies which might localize in different arms of the composite antenna ge-

ometry. Additionally, the second approach also requires the interacting frequencies to be

orthogonally polarized. This can also be a potential drawback when considering the com-

monly employed quadratic media exhibit their strongest response through d33 component of

their polarizability tensor which is best utilized if the interacting frequencies are polarized in

the same direction. Moreover, it is easy to realize that the fabrication of such structures that

consist of multiple elements remains a challenge for current nano-fabrication. Even though

many top-down as well as bottom-up approaches for nano-fabrication are developed, the

precise alignment of the individual elements to form the actual nanoantenna constitutes an

unnecessary complication. Therefore, it is desirable to have available compact and isolated

nanoantennas that can sustain resonances at frequencies on demand.

It is the aim of this paper to explore the potential of cylindrical nanowires as an ideal

platform to tailor the nonlinear interaction of light with matter and which meets both

aforementioned requirements. Most notably, we will show here that with only a single

structural entity it is possible to devise nanoantennas that sustain resonances at multiple

frequencies which are involved in the nonlinear process. These optical nanowire antennas are

superior for various reasons when compared to many other nanoantennas. First, their basic

functionality is well understood by now, even on the basis of semi-analytical models31,32.

Second, various fabrication methods have been proven to be applicable to realize those

nanoantennas with high precision33.

Starting point of the approach to our antenna design is the appreciation that it is not just
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the length of the nano-antenna that dictates the resonance frequency. Equally the termina-

tion of the nanoantenna can provide a significant degree of freedom for tailoring the response

of the system. In fact, in limiting cases the termination can even account for the localized

resonances exhibited by analytically understood nanoparticles in the quasi-static limit34. In

these optical nanoantennas a resonance is supported whenever the phase accumulation of a

surface plasmon polariton that bounces back and forth in the nanowire experiences a phase

accumulation of a multiple of 2π. Contributions to this phase accumulation are due to the

propagation along the nanowire, i.e., determined by the dispersion relation, but also by the

phase of the complex reflection coefficient. It is essential to stress that both quantities may

have a tailored dispersion that can be independently controlled to a large extent. Design-

ing and engineering the nanoantenna termination with the purpose to tailor the antenna

resonances is an often underestimated opportunity. Thus it is only natural to consider the

antenna terminations towards an enhancement of multi-frequency nonlinear processes as

discussed above.

To this end, we combine in our contribution a multitude of theoretical and numerical

means to explore the opportunities to tailor the second-order nonlinear response of nanowire

antennas embedded in lithium niobate (LiNbO3). Specifically, we utilize an analytical model

that can precisely predict the resonances, use a coupled-field theory approach to calculate the

strength of the nonlinear response, and verify all our predictions using full-wave simulations

that take into account the nonlinear process correctly.

II. LINEAR PROPERTIES

Figure 1(a) sketches the antenna geometry under consideration. It consists of a cylindrical

nanowire of length L that has a semi-ellipsoidal cap as termination. Two of the three semi-

axes of the cap perpendicular to cylinder’s axis are equal to the radius of the nanowire

whereas the third semi-axis a [Fig .1(a)] parallel to cylinder’s axis is allowed to be different.

This serves as an additional degree of freedom to tailor the response of the nanoantenna. The

limiting case of a = 0 would make it an abrupt termination whereas the limiting case of L = 0

would cause the antenna to collapse towards an ellipsoidal nano-particle34. When illuminated

with a plane wave whose electric field is polarized along the cylinder’s axis (x-axis) and

propagating along the z-axis [Fig. 1(a)], a propagating surface plasmon polariton is excited
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FIG. 1: (a) Cylindrical nanowire of length L terminated by semi-ellipsoidal caps on both sides.

Two semi-axes of these caps are shared with the radius of the nanowire whereas the third axis is a

free parameter, labeled as a. (b-f) |Ey| distribution of FP modes of order M when the antenna is

illuminated by an x-polarized plane wave propagating along z-axis. For exciting modes with even

M , the exciting wave was inclined with respect to the z-axis on the x− z-plane in order to break

the symmetry.

on the nanowire. It bounces back and forth between the semi-ellipsoidal terminations where

it causes the nanoantenna to sustain eventually Fabry-Perot (FP) resonances at specific

frequencies for a fixed geometry. The requirement to observe an antenna resonance at a

frequency ν can be described as31,33,34

β
′

(ν)L+ φr(a, ν) = mπ (1)

where β
′

(ν) = ℜ{β(ν)} is the real part of the propagation constant, φr(a, ν) the phase

of the modal reflection coefficient r(a, ν), L the length of the cavity, and m an integer

denoting the order of the FP resonance. The reasoning for the antenna resonance derives

from the requirement that the phase accumulation per round trip shall be a multiple of

2π. It should be pointed out that only symmetric antennas are considered here, i.e., those

where the antenna capping is identical for both terminations. Figures 1(b-f) plot the |Ey|

field distribution of FP resonances of various order m in the x − z cross section of the

antenna. It should be noted that unlike odd order resonances, even order ones are forbidden

by symmetry and were excited by the incoming wave inclined with respect to the z-axis on
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x− z plane [Fig. 1(a)] .
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FIG. 2: (a) Dispersion of fundamental TM0 mode computed for a cylindrical wire of radius 15nm.

(b) Schematic illustration of the 3D geometry used for obtaining the modal reflection coefficient

r(a, ν) of TM0 mode. (c) Squared amplitude R(a, ν) = |r(a, ν)|2 (c) and (d) phase φr(a, ν) =

arg[r(a, ν)] of the reflection coefficient are also shown.

To numerically model the system, we describe the metallic nanoantenna using a Drude

fit of Ag35 defined by the plasma frequency ωp = 1.88× 103THz and damping γ = 19.3THz.

The surrounding dielectric medium is assumed to be LiNbO3 whose dispersion is isotrop-

ically defined, for the sake of computational simplicity, through the extraordinary axis by

means of a Sellmeir fit36. The anisotropy of the nonlinear χ(2) tensor, however, is fully

considered and its c-axis is aligned to the x-axis [Fig. 1(a)] to make the most out of the

strongest d33 coefficient. Since numerical techniques based on finite element method (FEM)

are more suitable to capture geometrical curvature37, we employed a commercial FEM based

electromagnetic solver COMSOL MULTIPHYSICS to compute the linear dispersion of

the complex modal propagation constant β(ν) of the fundamental TM0 mode on a cylindri-

cal nanowire of 15nm radius [Fig .2(a)]. As the radius of the nanowire is sufficiently small

compared to the wavelength (quasi-statics), we need not to consider any higher transversal

mode supported by the nanowire31,34. In order to obtain the modal reflection coefficient

from the terminal cap, we employ a computational setup shown in Fig. 2(b). The eigen-
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mode is launched at z = 0 plane where the back-reflection from the antenna termination

gets absorbed into the perfectly matched layers (PML) surrounding the computational win-

dow. A straightforward application of the orthogonality relation established through the

unconjugated reciprocity theorem38 leads to the following equation for the modal reflection

coefficient:

r(a, ν) = − exp(−i2β
′

l)

´

∞

0
Eρ,0(ρ, ν) [Hφ(ρ, z = 0, a, ν)−Hφ,0(ρ, ν)] ρ dρ

´

∞

0
Eρ,0(ρ, ν)Hφ,0(ρ, ν)ρ dρ

. (2)

The symbols Eρ,0(ρ, ν) and Hφ,0(ρ, ν) denote the radially and azimuthally polarized elec-

tric and magnetic field components of the eigenmode supported by an infinitely extended

nanowire, respectively. Likewise, Hφ(ρ, z, a, ν) denotes the total magnetic field within the

computational domain that introduces the dependence upon the cap radius a. The length l of

the antenna in Fig. 3(b) was chosen large enough as to remove any dependance of r(a, ν) on it

due to coupling to higher order evanescent modes, although the application of orthogonality

relations should already have significantly suppressed it. At z = 0 plane, Hφ(ρ, z = 0, a, ν)

is a superposition of incident and reflected modes from which the contribution of the inci-

dent eigenmode is subtracted to obtain the reflection coefficient. Figures 2(c,d) display the

squared amplitude R = |r(a, ν)|2 and phase φr(a, ν) = arg[r(a, ν)] of the dispersive modal

reflection coefficient.

Given the strong dispersion of r(a, ν) [Fig. 2(c-d)] upon both frequency and cap geometry,

we attempt to explore the possibility to align FP resonances of different orders with the

frequencies taking part in the nonlinear process. To this end, we propose to exploit the semi-

axis a of the cap as a degree of freedom in design parameters while keeping the radius of the

nanowire constant. This can be desirable in circumstances where strong field localization is

required because the fundamental TM0 mode shows increasing localization with decreasing

wire radius34. As for the specific nonlinear interaction considered, we choose to work with

the degenerate nonlinear process of second-harmonic generation (SHG) when the metallic

cylinder is embedded in a dielectric medium possessing a χ(2) response. More complex

scenarios involving three- or four-wave mixing (cubic media) can be explored along the

same lines.
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III. NONLINEAR PROPERTIES

¿From the linear simulations we can extract all the information necessary to predict the

spectral position of the FP resonances of the antenna. In terms of the antenna length L,

the resonance condition of Eq. (1) can be written as

Lm =
mπ − φr(a, νFH)

β
′(νFH)

,

Ln =
nπ − φr(a, 2νFH)

β
′(2νFH)

,
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FIG. 3: (a) Pump frequency νFH and (b) length L for the given cap radius a where double resonance

is possible for FP ordersm,n at FH and SH respectively. Horizontal and vertical black lines indicate

the operating configuration (ν = 276THz, a = 17nm and L = 50nm) chosen in this study.

where m and n are integers denoting the order of the FP resonances at FH and SH

frequencies, respectively. In order to find configurations whith a resonant response at both

the fundamental (FH) and corresponding second harmonic (SH), we solve for the condition

Lm = Ln. Figure 3 displays the result when the semi-axis a is varied from 5nm to 25nm

and the FH frequency from 180THz to 320THz. The figures have to be read such that for a

desired operation frequency of the FH a certain semi-axis a can be derived [cf. Fig. 3(a)].

Using this specific a the corresponding antenna length L can be read off from Fig. 3(a-

b), such that the corresponding antenna sustains a resonance at both the FH and the SH

frequencies. Allowing for different FP orders at FH and SH, we obtained doubly-resonant

configurations for the combination of 1st order at FH with 3rd and 4th order at SH, and the

combination of 2nd order at FH with 5th order at SH, as indicated in the figure. It can be

seen that a suitable design that covers the entire frequency spectrum is not found for the

8



present rather restrictive geometry. However, for quite a large spectral domain in multiple

intervals double resonant nanoantennas can be perceived.

(a) (b)

(c) (d)

200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

 [THz]

T

a=12nm

a=17nm

a=22nm

FH SH

200 300 400 500 600
0

0.2

0.4

0.6

0.8

1

 [THz]

T

L=38nm

L=50nm

L=62nm

FH SH

12 14 16 18 20 22
100

150

200

250

300

a [nm]

F
H

 [
T

H
z
]

1.5

2

2.5

3103.0

102.5

102.0

101.5

[
W
]

[
W
]

30 40 50 60 70
100

150

200

250

300

L [nm]

F
H

 [
T

H
z
]

1.5

2

2.5

3103.0

102.5

102.0

101.5

FIG. 4: (a) Linear transmission spectrum and (b) nonlinear mode overlap |γ| for cap detuning.

Likewise, (c) and (d) show the linear transmission and mode overlap when the length of the antenna

is detuned. The nonlinear mode overlap is obtained by illuminating with a pump of power 1W per

unit cell. Please note that |γ| is shown on a logarithmic scale.

Considering only the bright resonances, i.e. excitable resonances, under normal illumina-

tion (parallel to the z-axis [Fig. 1(a)]), we shall exclusively work with the scheme exhibiting

1st and 3rd order resonances at FH and SH frequency, respectively, in Fig. 3. However, this is

by no means a general restriction because the other combinations could have been explored

as well.

In order to compare the predicted resonance frequencies to those supported by the actual

structure, first we performed linear full wave simulations. Specifically, we considered an

array of antennas arranged in a periodic lattice of 200nm × 200nm in the transverse x − y

plane. The period was chosen large enough such that the interaction among neighboring

nanoantennas may be disregarded. Choosing a test case of a = 17nm, we find L = 50nm

and νFH = 277THz as the configuration for double resonance from Fig. 3. The periodic

array is excited with x-polarized light according to Fig. 1(a) to compute the linear response

of the system. Figures. 4 (a) and (c) show the transmission results when the cap semi-axis
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a and the length L of the antenna are detuned. A detailed inspection clearly demonstrates

the double resonance characteristic at both FH and SH in the fully resonant case. It can be

extracted from the figure that the resonances predicted with the analytical model are indeed

supported by the structure at the correct frequencies.

To theoretically understand the advantage of doubly resonant antennas for nonlinear

interaction, in a second step we take advantage of the undepleted pump approximation to

describe the nonlinear interaction of the near fields at both the FH and SH frequency39.

Accordingly, the strength of the nonlinear interaction is described in terms of an effective

nonlinear coefficient γ which depends crucially on the field overlap and is defined under

Kleinman’s symmetry as

γ ≈ ε0νFH

˚

d33(r)E
2
x(r, νFH)E

⋆
sx(r, 2νFH)dr, (3)

where Ex(x, y, ν) is the x-component of the total FH field (incident plane wave and

scattered field by the periodic array) while Esx(r, ν) denotes the x-component of the scattered

(without excitation at SH frequency) SH field. Equation (3) is approximately written in

terms of the dominant d33 coefficient of the contracted χ(2) tensor which is at least one

order of magnitude stronger than the rest36. In numerical simulations, however, the full

anisotropic χ(2) tensor is taken into account.

By illuminating the periodic array with a plane wave of power 1W per unit cell, we

scanned for the variation of |γ| in case of cap and length detuning as before. The results

are shown in Fig. 4(b,d). We find an enhancement in |γ| by approximately twice the order

of magnitude when νFH = 277THz and the cap axis a = 17nm [Fig. 4(b)] or length L =

50nm [Fig. 4(b)]. Another bright line is also visible when the incident pump frequency is

νFH = 139THz. This happens because the corresponding SH frequency coincides with the

first order FP resonance of the antenna and the nonlinear response is equally enhanced in

such a single-resonant configuration although less pronounced.

To corroborate the predicted enhancement in nonlinear interaction, we performed non-

linear full-wave simulations using our in-house code based on finite-difference time-domain

(FDTD) method. The grid size in the discretized space was chosen to be 1nm whereas

metallic and dielectric dispersion was incorporated through the fits described earlier. The

instantaneous nonlinear response of the dielectric medium was incorporated into the FDTD

simulation as40:
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FIG. 5: (a) Transmission spectrum of nonlinear FDTD simulations when illuminated with a CW

pump of power 13mW at ν = 277THz showing the effect of detuning the cap radius a where L = 50

nm(a) and (b) length L where a = 17 nm from their resonant values of a = 17nm and L = 50nm,

respectively.
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2

2d31(r)Ex(r, t)Ey(r, t)

0











(4)

For the sake computational simplicity, we omitted in our code [hence Eq. (4)] those

components of the contracted χ(2) tensor which introduce dependance on Ez field which

is negligibly smaller than others. Illuminating the periodic array with a continuous-wave

(CW) pump at νFH = 277THz and carrying 13mW power per unit cell, we computed the

power flux in transmission at SH through a periodic cell. Figures. 5 show the results for

the two specific cases of cap and length detuning discussed earlier in parts (a) and (b)

respectively. An order of magnitude enhancement is observed in the generated SH when the

geometrical parameters coincide with the doubly resonant configuration [Fig. 4(a,c)] clearly

demonstrating the advantage of our scheme.

The scenarios discussed so far, however, do not fully distinguish the merit of having doubly

resonant antennas. Therefore, we calculated the antenna configuration when illuminated at

the same frequency (νFH = 277THz) but the geometrical parameters are varied to only keep

either of the two resonances at pump or SH frequency as shown in Fig. 6(a). To clarify the

role of the resonance at SH, we chose to work on the red line in Fig. 6(a) which describes the

geometrical configuration where the antenna is always resonant at νFH = 277THz. It can be

clearly seen that the SH is only resonant, in general, for a slightly different geometry except
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FIG. 6: (a) Antenna configuration at νFH = 277THz when FH has FP resonance of 1st and SH

of 3rd order. (b) Linear transmission spectrum and (c) nonlinear mode overlap |γ| are shown

when the antenna is kept resonant at FH according to (a). Likewise, the transmission spectrum

of nonlinear FDTD-simulations is shown in (d) when the structure is illuminated with a pump of

νFH = 277THz.

for a specific, the doubly resonant configuration. Only if this configuration is met, a double

resonant scheme is achieved whereas otherwise the nanoantenna is only single resonant at

FH.

Figure. 6(b) shows the corresponding results of linear transmission simulation performed

in the same manner as discussed earlier in the context of Fig. 4. We find the FH to be

always resonant at νFH = 277THz as enforced but the SH is detuned except when the cap

semi-axis is a = 17nm. Figure. 6(c) scans the value of |γ|. The bright line in Fig. 6(c) at

νFH = 139THz shows no geometrical dependance because the antenna is always resonant

at the corresponding SH. But the bright line around νFH = 277THz is slanted indicating

a prominent dependance upon the SH resonance of the antenna which keeps changing for

different geometrical configurations. Figure 6(d) shows the computed SH transmission spec-

trum in nonlinear FDTD-simulations whose computational details are the same as described

earlier. The peak for the largest second harmonic signal is reached in Fig. 6(c) for a = 18nm

which is close enough to the predicted value of a = 17nm. This minor deviation can be

attributed to disparity between the numerical methods - FEM for the analytical prediction
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while the FDTD-method was employed for nonlinear computations. However, overall we see

an excellent agreement and a clear demonstration of the positive impact doubly resonant

antennas can have on enhancing the efficiency of nonlinear interaction.

IV. CONCLUSION

In conclusion, we proposed and numerically demonstrated that a simple plasmonic an-

tenna consisting of a cylindrical metallic nanowire with semi-ellipsoidal terminations pro-

vided already sufficient degrees of freedom such that it can be tuned to have double reso-

nance sustained across an extended range of incident frequencies. Through rigorous linear

and nonlinear full wave FDTD-simulations, the superiority of doubly resonant structures

over singly-resonant ones was demonstrated for the specific case of second-harmonic gen-

eration. The key that unlocked these tuning opportunities was the appreciation that the

terminations of the nanoantennas, i.e. their cappings, can be independently controlled from

the main body of the nanoantenna, i.e. the wire. This degree of freedom was thus far not

exploited in the context of nonlinear plasmoncics. Although the fabrication of the suggested

structures sound challenging, nowadays available high resolution top dow nano-fabrication

techniques, e.g. based on Helium-Ion-Lithography can be used in perspective. Alternatively,

bottom-up approaches can also be used, e.g. based on the controlled reduction of a metal

salt on an existing nanowire for homogenous material systems41 but also for heterogenous

material systems42 if desired. Our findings have the potential to greatly enhance the out-

come of more complex, nondegenerate parametric interactions leading to novel applications

in optical spectroscopy and computing.
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