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A double-patterning process for scalable, efficient and deterministic nanoring array fabrication is presented. It enables gaps 

and features below a size of 20 nm. A writing time of 3 min per cm² makes this process extremely appealing for scientific and 

industrial applications. Numerical simulations are in agreement to experimentally measured optical spectra. Therefore, a 

platform and a design tool for upcoming next generation plasmonic devices like hybrid plasmonic quantum systems is 

delivered.  

 

One of the main promises of plasmonic research has always been the possibility to enhance light-matter-interactions at the 

nanoscale for a large frequency range. The enormous impact of plasmonic structures on the dynamics of close-by quantum 

systems has been demonstrated in groundbreaking experiments1 and new effects have been predicted2. Especially the use of 

plasmonic structures functionalized by spectrally tunable quantum dots offers new applications in photovoltaics3, 

nonclassical light generation4, and unprecedented sensing devices5. However, to turn ideas into devices either scientifically or 

from an application perspective, it is of paramount importance to provide high-throughput reproducible fabrication processes 

for the plasmonic nanostructures of interest. These processes also have to cope with the extreme precision required by small 

feature sizes. Often, deviations of just a few nanometers in the geometry spectrally shift a resonance by hundreds of 

nanometers6. This shift would significantly degrade the ability of these plasmonic nanostructures to couple in the near-field to 

quantum systems that have a well-defined transition energy. With the purpose to provide a material platform that is as 

functional and as versatile as possible, the plasmonic properties of the nanostructures have to be deterministically scalable 

across an extended spectral domain. 
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A metallic nanostructure that has already proven its ability to serve as a strongly dispersive plasmonic building block with 

excellent tuning properties is a nanoring7,8. Nanoring arrays can be characterized by four geometrical parameters, i.e. height, 

inner and outer diameter as well as period. Together with the choice of the plasmonic, substrate and filling material, 

nanorings offer a great tuning flexibility and a pinpoint customization capability to a broad range of applications. 

In this letter, we report on a scalable and efficient multi-step process to fabricate plasmonic nanoring arrays with geometrical 

features and gaps below 20 nm. Utilizing character projection9 (CP) electron beam lithography (EBL) and a special double 

patterning (DP) technique allows the definition of multiple square decimeters in a reasonable timespan of hours (3 min per 

cm²). Thus, this process is extremely appealing for large scale fabrications. Furthermore, a cost-efficient replication is 

possible by nanoimprint technology10. The process is aiming for patterning of nanostructures which are characterized by 

small features, geometric fidelity and purity of the noble ring material.  

 
FIG. 1. Sketches of intermediate fabrication steps (see main text). (a) Template for DP, (b) chromium ring after DP, (c) Al2O3 ring after 
IBE and removal of the chromium mask & (d) gold ring after O2-RIBE and stripping of the Al2O3 mask.      

The fabrication process is describe as follows: Samples fabrication begins on a polished fused silica substrate. To improve 

the poor adhesion of gold, a 3 nm thin titanium layer is deposited by physical vapor deposition. The deposition of a 50 nm 

thick gold film follows subsequently in vacuum sequence. The sample is annealed at 200 °C in a furnace for 30 minutes to 

allow recrystallization and improvement of its plasmonic properties. Afterwards it is spin-coated with 10 nm Al2O3 by atomic 

layer deposition (ALD). In the next steps the substrate is subsequently coated with 120 nm Resist (Clariant AZ1505), covered 

with 10 nm chromium by ion beam deposition (IBD) and spin-coated with 110 nm chemically amplified negative tone resist 

(TOK CAN034). The chromium layer is primarily used as hard etching mask for the underlying photoresist AZ 1505 and 

secondarily as a conduction layer required for the e-beam exposure. The exposure is carried out by a Vistec SB350 OS EBL 

system. After development of the resist, the nanostructures were subsequently etched into the chromium layer by ion beam 

etching (IBE) and the AZ 1505 layer by oxygen reactive ion beam etching (O2-RIBE). During this process, the CAN034 layer 

was completely removed and the template for the following self-aligned DP process12 is achieved (Figure 1a). The template is 
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homogeneously coated with 30 nm chromium, i.e. angle-deposited at 45° by IBD while continuously rotating the substrate. 

The chromium ring is yield by removing the chromium from all horizontal surfaces and the inner resist template with IBE 

and oxygen plasma (Figure 1b). Fabrication is continued by transferring the chromium ring into the Al2O3 layer by means of 

IBE. Afterwards we remove the chromium ring in a NiCr solution (Figure 1c). The selectivity between Al2O3 and gold for 

O2-RIBE is sufficient to mask 50 nm gold with 10 nm Al2O3. After transferring the Al2O3 mask into the gold layer by O2-

RIBE it is wet chemically removed in phosphoric acid (Figure 1d). 

Within this process, EBL is the essential limiting factor concerning the scalability for large volume fabrication, because it 

implies rasterization of the written sample surface. We overcome this disadvantage and partially parallelize this process by 

using CP, i.e. projection of a fixed mask into the resist plane. The mask contains one or more unit cells of the written pattern 

with a maximum area of 2.5 µm x 2.5 µm. By this way, the raster is increased to 2.5 µm, rasterization becomes independent 

from the pattern, and the overall writing time can be reduced by three orders of magnitude compared to conventional EBL9.  

Introducing an Al2O3 layer has multiple advantages for the whole process. First, it is a diffusion barrier between gold and 

chromium. Second, the etching ratio to gold and chromium is high (5:1) if oxygen is utilized as reactive etchant during IBE. 

Therefore, it is an etching barrier which protects the underlying gold layer from etching into it during formation of the 

chromium ring (Figure 2i). Later, this Al2O3 layer becomes an etch mask for the following gold layer. By using the low 

aspect ratio Al2O3 mask instead of the chromium ring minimizes impure re-deposition on the sidewall and broadening of the 

mask. The overall resolution of the etching process is increased. 

The position and inner radius of the nanorings are defined by EBL. Hence, an arbitrary arrangement and inner radius of the 

nanorings are easily achievable within the same sample. It is for example possible to fabricate isolated nanoring dimers, 

trimers or structures with spatially varying geometrical properties side-by-side. The definition of all other geometrical 

parameters are distributed among ion beam deposition, quartz crystal controlled electron beam evaporation, ALD and 

(reactive) IBE with in-situ optical emission spectroscopy for end point detection. All these processes are known to be highly 

reproducible and accurate on the nanometer scale. In total, we expect an overall fabrication accuracy of a few nm for pattern 

position, thickness, height, and spacing. 
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FIG. 2. Images and geometrical model of the nanoring arrays. a-d) helium ion micrographs of all 4 samples, tilted by 30°; e-f) Cross section 
of samples c and d; g) magnification of a; h) sketch of ring model (see measured values in Table 1); i) chromium mask of sample a tilted by 
54°.      

To verify this sophisticated fabrication process, we performed several experiments that serve the characterization of the 

fabricated samples. First, the geometry of the samples has been investigated by different imaging techniques (Figure 2). To 

determine the height profile, cross-sections were prepared by a Focused Gallium Ion Beam and imaged by scanning electron 

microscopy (SEM) (Figures 2e and 2f). The radii and distance between the nanorings were determined by evaluating helium 

ion micrographs (Figures 2a - 2d). This technique is superior to SEM, especially for imaging non-conducting samples11. 

From those measurements, we derived a model of the nanorings obtained in the experiment that allows for an easy 

parameterization (Figure 2g). The gold ring itself is parameterized with the unit cell size Λ, the outer Diameter D1, the inner 

Diameter D2, and the height h. Besides the rings, the most noticeable features in the cross-sectional views (Figures 2e and 2f) 

are a socket at the bottom and round edges at the topside of the rings. Both properties are fully taken into account in our 

model. The rounding, caused by erosion of the mask edges during IBE is approximated by a radius of curvature is estimated 

to equal half the ring thickness (D1 – D2) / 4. The depth on the outer (h1) and the inner (h2) side addresses the socket, caused 

by poor selectivity between gold and fused silica. The measured parameters, given in Table 1, are emphasizing the flexibility 

and accuracy of our process. The gap and the inner diameter were tuned independently from 16 nm to 83 nm and 65 nm to 

143 nm, respectively. The difference between h1 and h2 is most likely attributed to trenching, i.e. a localized higher etch rate 

near the sidewalls of a nanostructure.   

Higher aspect ratio structures can be realized by increasing the thickness of the gold, chromium and aluminum oxide layers 

and the corresponding etching times. However, this might cause geometric shadowing while evaporating chromium under 

45°. In that case, another coating technique like chemical vapor deposition or ALD should be chosen, which allows a 
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conformal coating. Based on the gained experience from our experiments, we assume that the features of the demonstrated 

structures are close to the realizable minimum with utilized tools, materials and methods. For example, a smaller separation 

will lead to random interconnections between adjacent rings. A smaller inner diameter will not be properly resolved by the 

applied electron beam resist. 

TABLE I. Geometric Dimensions of the Nanoring Arrays 
Λ 

[nm] 
D1  

[nm] 
D2 

[nm] 
h 

[nm] 
h1 

[nm] 
h2 

[nm] 
Gap 
[nm] 

210 194 65 50 40 25 16 
240 193 70 50 40 25 47 
315 273 129 50 30 15 42 
360 277 143 50 30 15 83 
210 194 65 50 40 25 16 
240 193 70 50 40 25 47 
315 273 129 50 30 15 42 
360 277 143 50 30 15 83 
210 194 65 50 40 25 16 

To evaluate the optical properties, we measured several spectra using unpolarized light in PerkinElmer Lambda 950 

spectrometer and compared the results to numerical simulations (COMSOL Multiphysics®). Since the spectra are strongly 

depending on the geometry of the rings, their exact placement and purity of the noble metal, an agreement between 

measurement and simulation indicates a technological success by all parameters. Notably, an agreement will support a 

reliable design of future nanodevices exceeding the complexity of a periodic nanoring array. The geometry of the rings has 

been simulated according to the model illustrated in (Figure 2h) and described above. The permittivity of gold was taken 

from ellipsometric measurements of a bare layer. The comparison between experimental and numerical results is outlined in 

Figure 3. The plasmonic resonances of the nanoring arrays are in the near infrared region. The field inside the core of the 

rings is relatively homogeneous and commonly found in plasmonic nanorings7. By varying the period, the spectral resonance 

position was shifted from 750 nm to 1050 nm. Decreasing the gap between the rings leads to broadening of the resonance and 

a stronger field enhancement between the rings. Measurement (solid lines) and simulation (dashed lines) are in good 

agreement with insignificant deviations regarding the spectral resonance position, amplitude and width. Structural 

fluctuations and the measurement error of the geometrical dimensions only amount to few nanometers but might be 

accounted for those deviations. However, the overall agreement between measurement and simulation implies that impurities, 

which are usually introduced during etching processes, are marginal. Otherwise, we would expect a considerable red shift and 

broadening of the measured resonances with respect to the simulation8.  
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FIG. 3. Comparison of measured (solid lines) and simulated (dotted lines) reflectances for gold nanorings for different geometrical 
parameters. An almost perfect agreement is found in all cases. Top: periods of 210 nm (blue) and 240 nm (red) with separations of 16 nm 
and 47 nm, respectively. The increase in ring-to-ring distance leads to much smaller field enhancements inside the gap, see inset. Bottom: 
Larger periods and bigger rings lead to a huge redshift but the simple theoretical model is also applicable in this region.      

In summary, we provided a reliable, deterministic and scalable double patterning process for realizing plasmonic nanorings at 

a writing speed of dm² per hours. The fabricated nanorings exhibit resonances in the near infrared regime and gaps below 20 

nm. The found agreement between measurement and simulation will allow precise design of upcoming devices in future 

applications. 

Because of the large flexibility of the geometrical parameters, the investigated nanorings offer a highly adjustable platform 

for next generation plasmonic devices at visual, near- and mid-infrared wavelengths. On the one hand, a gap-size down to 15 

nm will allow the realization of strong coupling effects like energy splitting or level crossing if the rings are arranged as 

dimers7 or in higher order superstructures2. On the other hand, the enhanced light-matter-interaction inside gaps and the 
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provided homogeneous field distribution inside the nanorings promise new insights and applications when combined with 

quantum systems to form hybrid plasmonic quantum systems.  
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