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Abstract

On an emprirical base, we indicate the possibility to conceptually unify the description of reso-

nances existing in blue some of the analytically studied metallic nanoparticles and optical nanowire

antennas. To this end the nanoantenna is treated as a Fabry-Perot-like resonator with arbitrary

semi-nanoparticles forming the terminations. We show that the frequencies of the quasi-static

dipolar resonances of the considered nanoparticles coincide with those where the round-trip phase

of the complex reflection coefficient of the fundamental propagating plasmon polariton mode at

the wire terminations amounts to 2π. The lowest order Fabry-Perot resonance of the optical wire

antenna occurs therefore even for a negligible wire length.

PACS numbers: 41.20.Cv, 42.25.Fx, 73.22.Lp, 78.20.Bh
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Small particles are among the earliest cases tackled by light scattering theory. The quasi-

analytical rigorous solution for spheres dates back to the pioneering work of Gustav Mie

in 19081. This approach can be considerably simplified if the size of the spheres is small

compared to the illuminating wavelength resulting in the quasi-static approximation2,3. The

resulting analytic formulae for the polarizability of the sphere exhibit resonant denomina-

tors, such as the well-known expression εm(ν) + 2εd(ν) = 0 for the dipole resonance of a

metallic sphere in a dielectric host medium. In this case and generally, the permittivities of

the spheres and their surroundings need to exhibit opposite signs at resonance. The scat-

tered field exhibits strongly enhanced stationary evanescent components at the interface –

a phenomenon which is termed localized surface plasmon polariton (LSPP)4. Intriguingly,

it was shown that in this approximation the quality factor of the resonance solely depends

on the material properties rather than the particle shape5 which, however, affects the reso-

nance frequency. Only for a few other particle shapes, e.g. ellipsoids and spherical shells or

particles with a lower dimensionality, i.e. a cylinder, the resonance condition can be put in

a similar form known from the sphere. The exploitation of these LSPPs at nanoparticles of

different shape has led to various applications and is forming one branch of the prospering

field of plasmonics.

If the metal is a perfect conductor, another resonance is supported by metallic wires if

their length corresponds to a multiple of half the illumination wavelength. Such metallic

wires constitute the basic building blocks of radio-frequency (RF) antennas. Recently, their

downscaling into the visible attracted considerable interest and the field of optical antennas

is now similarly established. Conceptually, optical antennas differ from RF antennas in

that the field propagating along the wire is no more purely photonic but forms another

polaritonic excitation6. This type of quasi-particle is referred to as propagating surface

plasmon polariton (PSPP) due to its sole energy transport in the propagation direction. As

for any guided mode phenomenon, the PSPP dispersion relation may strongly depend on

the wire’s cross-section (see e.g.7).

The origin of resonances in these finite-length nanowires is well-understood in terms of

Fabry-Perot resonances of the PSPP mode confined between the partially reflecting wire

terminations8–12. Unlike in antennas at microwave frequencies, here the reflection coeffi-

cients are complex-valued, providing an additional phase term which mimics an increase of

the wire length and depends on the actual shape of the termination. This resembles the

2

http://robertfilter.net


situation in a planar Fabry-Perot resonator with Bragg mirrors, where the number of layers

also affects the actual phase shift and thus the resonance condition. This is also the reason

why multiples of half the resonance wavelength differ from the wire length8,10–13. This pecu-

liarity evoked research interest and both analytical and numerical results on the spectral and

geometrical dependence of reflection coefficients were reported for abrupt or flat nanowire

terminations14,15. Moreover, associated geometries, such as e.g. trenches, grooves or slits

on or in flat metal surfaces or metallic thin films, were analyzed with respect to their re-

flection/transmission properties of PSPP launched along the metal surfaces16. It allows for

obtaining more insight into the underlying physics of phenomena observable in such systems.

Examples thereof would be the enhanced transmission in subwavelength apertures17.

To date, aforementioned metallic nanoparticles are largely studied in terms of LSPP

resonances whereas wire nanoantennas are commonly analyzed in terms of PSPP standing

wave phenomena and these seemingly disparate approaches have not been systematically

integrated. A few reports on variable length nanoantennas13,18 consider spherical particles as

the limiting case of cylindrical wires. Nevertheless, it is challenging to disclose the mechanism

behind this convergence of resonances in analytically understood geometries at a physical

level. Here we attempt to provide a unifying view on some of the analytically understood

nanoparticles in research. It turns out that the LSPP resonances of all of them follow

straightforwardly from solving the reflection problem at the nanowire termination.

Beginning with the simplest case, we take nanowires of circular cross-section with hemi-

spherical terminations at both ends [Fig. 1(a)]. This nanoantenna becomes a sphere for

vanishing wire length L. We hypothesize that the dipolar resonance of a sphere that is

observable in the far-field e.g. as a peak in the scattering cross section is caused by the con-

structive interference of the forward and backward propagating fundamental (m = 0) PSPP

mode of the nanowire19–21. Then, the necessary condition for a Fabry-Perot resonance –

that is, the round trip reproduction of the phase factor – is a total phase accumulation of an

integer multiple of 2π. This condition can already be met for a wire with negligible length,

i.e., the sphere. It implies a phase shift of π upon reflection at each termination. In general,

higher order PSPP modes do not need to be considered since all modes with |m| ≥ 2 cut-off

below a threshold wire radius22. Moreover, the PSPP mode with |m| = 1 diverges for a

vanishing radius, thereby suffering from increasing radiation losses. Therefore, it cannot be

excited anymore23 and the system becomes simple enough to be understood in terms of a
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FIG. 1: Sketch of considered metallic nanoantenna geometries. Circular cylinder (a) and cylindrical

shell (b) with a hemispherical termination; elliptical cylinder with a semi-elliptical termination

(c); one-dimensional nanoantenna with a semi-cylindrical termination (d). All nanoantennas are

composed of a nanowire (metallic color) and a termination (golden) while L is the nanowire’s length

fundamental (m = 0) PSPP mode. In the limit when the radius becomes comparable to

the incident wavelength, our model requires further substantiation owing to an additional

dynamics brought in by the higher order modes.

We use the Comsol Multiphysics simulation platform to numerically solve the reflection

problem at the wire termination. The metallic nanowire is assumed to be semi-infinite and

it is surrounded by a dielectric medium with a permittivity εd. The computational cell is

enclosed by perfectly matched layers to mimic an open space. Silver (Ag) is used as the

metal, with its dispersive permittivity fully considered24. The cylindrical wire have a radius

of 10 nm. The exact value of the radius is not important provided it is much less than the

wavelength.

First we calculate the dispersion relation of the fundamental wire eigenmode and sub-

sequently use this mode as illumination of the termination of the semi-infinite wire. Then

the total (incident and scattered) field is calculated in a plane normal to the wire axis and

located at z = 0. The complex reflection coefficient of this mode at the termination is ex-

tracted by employing the orthogonality relations obtained through unconjugated reciprocity

theorem25 which yield an expression for reflection coefficient as
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r = − exp−i2βL

∫∞
0

Eρ,0(ρ, 0) [Hφ,tot(ρ, 0)−Hφ,0(ρ, 0)] ρ dρ∫∞
0

Eρ,0(ρ, 0)Hφ,0(ρ, 0)ρ dρ
(1)

where Hφ,0(ρ, 0) being the azimuthal magnetic field and Eρ,0(ρ, 0) the radial electric field

components of the incident PSPP mode (m = 0) at z = 0, β is the associated propagation

constant and L is the distance between origin (z = 0) and the initial plane of the antenna

termination. All quantities, except the wire geometry, depend on frequency. In passing we

note that the distinction of what belongs to the wire and what belongs to the termination

is arbitrary to a certain extent. The phase accumulated due to propagation and the phase

accumulation due to reflection can easily be merged. However, since we wish to discuss

solely the properties of the termination, the length L is understood as the length of the

nanoantenna along which no change of the cross-sectional profile occurs.
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FIG. 2: Real (a) and imaginary part (b) of the propagation constant β of the lowest order PSPP

mode as a function of frequency ν for selected values of εd; εd = 1 (solid red), εd = 2.8 (dashed

blue), εd = 5.4 (dotted magenta), εd = 9(dotted-dashed black). The inset shows the Hφ-field norm

for a core radius of 10nm and εd = 1.

In Fig. 2 the complex-valued propagation constant β of the lowest order PSPP mode is

displayed as a function of the frequency and the permittivity of the surrounding medium.

The real part exhibits the usual dispersion characteristic where the propagation constant

increases with frequency until back-bending sets in. This back-bending is associated with a

strongly increasing damping (imaginary part). In the succeeding spectral domain, any anal-

ysis of the reflection coefficient tends to be cumbersome since dissipation entirely dominates

the system.

Figure 3 shows the complex reflection coefficient as a function of frequency for different
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FIG. 3: Amplitude (a) and phase (b) of the reflection coefficient of the nanowire for selected values

of εd; εd = 1 (solid red), εd = 2.8 (dashed blue), εd = 5.4 (dotted magenta), εd = 9 (dotted-dashed

black).

εd extracted from the simulation of a semi-infinite wire for the respective lowest order PSPP

mode. It can be seen that at low frequencies the modulus is constant and large with a

phase shift around zero, suggesting a perfect metal-like behavior. The phase increases with

frequency and undergoes an abrupt change at a critical frequency. This jump is associated

with the decrease in the reflected amplitude and it appears in the frequency interval where

back bending occurs. Now it is easy to extract the frequency where a phase jump of π occurs

and to compare it to the resonance frequency predicted by the quasi-static theory for a small

sphere. Additionally, it can be seen that the phase surpasses even values corresponding to

multiples of π. As the scope of this work is restricted only to resonances visible in the

analytical formulation of quasi-static limit, we will not attempt to disclose any possible

relation of these higher order Fabry-Perot resonances to the ones accessible in rigorous Mie

theory. But it suffices to say that for isolated particles such resonances are not observed

because they are dipole forbidden and suffer from excessive damping.

Figure 4(a) shows a comparison of the resonance frequencies predicted by the quasi-

static theory as well as the PSPP reflection calculation for different surrounding media. The

excellent agreement between both approaches demonstrates that the resonances of a sphere

in the quasi-static limit are directly related to the corresponding limit of the nanoantenna

problem.

To further investigate the applicability of this conclusion, we briefly analyze other well-

known particle geometries in the following. Another special case of a spherical nanoparticle
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FIG. 4: Resonance frequency of a sphere (a) with a radius of 10nm as a function of permittivity

of surrounding medium and of a spherical core shell particle (b) as a function of the ratio between

shell and core radii b/a. The core radius a = 10nm is fixed. The permittivity of both the core

and the surrounding medium is εd = 1. Dots correspond to resonance frequencies as extracted

from the phase of the reflection coefficients and the solid lines correspond to the predictions from

quasi-static theory.

is one with a dielectric core and a metallic shell. It is of appreciable practical relevance since

its resonance frequency can be tuned across the entire visible spectral region by varying the

metallic shell thickness26. Such particles exhibit lower and higher energy LSPP resonances

which appear as a result of the hybridization of individual resonances of the constituting

metallic sphere and dielectric void27. We approximate the structure similarly as before

by a nanowire made of a dielectric core surrounded by a metallic shell terminated with a

hemispherical shell of the same construction [Fig. 1(b)]. Guided by intuition, we regard the

lower (upper) branch of the fundamental PSPP mode of the cylindrical metallic shell wire28

as responsible for the lower (higher) resonance frequency of these particles. We repeat the

aforementioned analysis for the lower branch PSPP mode and show a similar comparison

between resonance frequencies predicted by quasi-static approximation and the reflected

field where φr = π in Fig. 4(b) as a function of the ratio b/a between shell and core radii,

respectively. An analysis of the highly dissipative upper branch was not attempted due to

the conceptual difficulties associated with overdamped PSPPs (see also Fig. 2).

We extend the scope of our study toward non-spherical geometries. First we consider

an elliptical wire cross section [see Fig. 1(c)]. These particles can be envisioned straight-

forwardly to be composed of an elliptical nanowire (radii a and b) of negligible length and

terminations consisting of rotational symmetric semi-ellipsoids [Fig. 1(c)]. Note that the
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resonance frequencies of ellipsoids depend upon the illuminating polarization29. We set the

semi-axis a to be the symmetry axis and present the results for the electric field polarized

both perpendicular and parallel to it. Figure 5(a) shows the resonance frequency as calcu-

lated from the phase of the reflected field at the wire termination compared to the predictions

from quasi-static theory. In the antenna simulation the polarization is chosen by selecting

the eigenmode corresponding to the nanowire under respective illumination. Overall we find

good agreement in the predicted resonance frequencies by both methods.

The foregoing examples treated the case of 3D nanoparticles. Now we move on to a (quasi)

2D object in the form of a cylinder extending to infinity along its axis. Such cylinders exhibit

a dipolar resonance in the quasi-static limit under illumination with a plane wave having a

magnetic field polarized along the cylinder’s axis if (εm(ν) + εd(ν) = 0). Technically, this

is dealt with by considering a 2D insulator-metal-insulator (IMI) strip or nanowire having

semi-circular terminations [Fig. 1(d)]. The whole geometry then extends invariably out

of the plane. The IMI strip waveguide is well-known to support hybridized symmetric and

anti-symmetric PSPPs4, with the latter being strongly delocalized in the limit of a vanishing

thickness (long-range surface plasmon polariton). The symmetric mode, on the contrary,

localizes increasingly with decreasing thickness thereby standing out as the plausible source

of LSPP resonance of cylinders in the quasi-static limit. Therefore, taking a 20 nm thick

IMI strip terminated with semi-circular caps of 20 nm diameter, we obtain the reflection

coefficient for the symmetric plasmonic mode. Figure 5(b) shows the comparison of the

theoretically predicted resonance frequencies with the standing wave resonance. Again,

good agreement between the two approaches can be recognized.

In the end, we present a practical application of the ideas established above by considering

an asymmetric particle which cannot be divided into symmetric halves. Such a nanoparticle

can be formed straightforwardly in Fig. 1(a) by replacing one of the two terminal caps by a

half-spheroid whose semi-axes (a,b) perpendicular to the nanowire’s axis are equal and the

same as the nanowire’s radius (inset of Fig. 6). The semi-axis (c) of the spheroid parallel to

the axis of the nanowire is made different in length than the other two semi-axes to introduce

asymmetry in the entire particle. In our simulation, we set the radius of the hemisphere as

well as the semi-axes a = b of the half-spheroid equal to 10nm. The semi-axis c is finally set

to 20nm to form an egg-shaped particle. As there is no analytical formulation to predict a

resonance in these particles, we rigorously compute the far-field scattering cross-section by
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FIG. 5: Resonance frequency in (a) of an ellipsoid with b = c = 20nm surrounded by εd = 1

as a function of the ratio c/a between semi-axes and in (b) of a cylinder with a radius of 10nm

as a function of εd. In (a), solid blue (dashed red) curve corresponds to quasi-static resonance

of the spheroid under illuminating polarization perpendicular (parallel) to semi-axis a. Circular

(diamond) marks indicate frequencies at φr = π for polarization perpendicular (parallel) to semi-

axis a. The polarization in the antenna simulation is selected by choosing respective wire mode

as the illuminating field. In (b), the solid blue curve corresponds to quasi-static resonance while

circular marks denote the frequencies at which φr = π.

illuminating the particle with a plane wave having the E-field polarized parallel to the c-axis

of the semi-spheroid (inset of Fig. 6). A first order Fabry-Perot resonance is obtained when

the round-trip phase jump φ upon reflection from both hemispherical and semi-spheroidal

ends becomes equal to 2π. As it is evident from Fig. 6, both methods are in excellent

agreement.

In conclusion, we have proposed a novel perspective for looking at the LSPP resonances

of specific metallic nanoparticles and relate them to resonances of corresponding optical

nanoantennas. We show that the LSPP resonances appear at frequencies where the total

phase jump upon reflection of PSPPs from both terminals amounts to 2π. Numerical studies

show that the resonance frequencies coincide with those obtained for LSPPs in the quasi-

static approximation provided that this approximation is valid. Moreover, we foresee further

research devoted to the question how to relate the reflection phase to measurable scattering

quantities will be a fruitful direction.
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FIG. 6: Normalized scattering cross section σ (top) and total phase jump φ (bottom) for an

asymmetric composite particle (inset) made up of a hemisphere (radius = 10nm) and a half prolate

spheroid (a = b = 10nm, c = 20nm). Inset shows the 2D perspective of the proposed asymmetric

composite particle.
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