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We suggest to excite dipole-forbidden transitions in quantum-mechanical systems by using ap-
propriately designed optical nanoantennas. The antennas are tailored such that their near-field
contains sufficiently strong contributions of higher-order multipole moments. The strengths of these
moments exceed their free space analogs by several orders of magnitude. The impact of such exci-
tation enhancement is exemplarily investigated by studying the dynamics of a three-level system.
It decays upon excitation by an electric quadrupole transition via two electric dipole transitions.
Since one dipole transition is assumed to be radiative, the enhancement of this emission serves as
a figure of merit. Such self-consistent treatment of excitation, emission, and internal dynamics as
developed in this contribution is the key to predict any observable quantity. The suggested scheme
may represent a blueprint for future experiments and will find many obvious spectroscopic and
sensing applications.

PACS numbers: 73.20.Mf, 42.50.Hz, 32.70.Cs

I. INTRODUCTION

Optical nanoantennas have changed our perception of
how light can interact with matter. If such a nanoan-
tenna is made from a noble metal, it supports local-
ized surface plasmon polaritons (LSPP) at distinct fre-
quencies in the visible and near-infrared spectral range.
LSPPs are excited when the electromagnetic radiation
is resonantly coupled to the charge density oscillation in
the metal. LSPPs allow the focusing of light into vol-
umes (hot spots) inaccessible by classical optical devices.
Moreover, the hot spot intensities may exceed the inten-
sity of the external illumination by orders of magnitude.
These remarkable features render optical nanoantennas
as prime candidates for controlling and improving the
interaction of far-field light with other nanoscopic build-
ing blocks such as quantum dots, atoms, or molecules1–8.
Here, we shall treat such nanoscopic building blocks at
a quantum-mechanical level to fully grasp their internal
dynamics and to appropriately describe their properties.

Many applications have been developed that exploit
light interaction with such hybrid systems consisting of
a nanoantenna and a nanoscopic building block. Piv-
otal examples can be found in the field of biosensing9

and photovoltaics10,11. In studies that considered indi-
vidual hybrid systems, the most important finding con-
sisted in showing that optical nanoantennas can modify
the radiative decay rate of emitters12. By taking advan-
tage of this effect, one can either enhance the emission
rate or facilitate non-radiative decays. The interaction
of light with such hybrid systems was first studied for
highly symmetric optical nanoantennas as, e.g., metallic
nanospheres. However, more complex antennas can be
equally considered13. In such cases, the emission charac-
teristics of these hybrid systems might be entirely gov-
erned by the optical nanoanantenna and may strongly
deviate from the radiation pattern of emitters in free

FIG. 1. Left: a plane wave (purple) scatters two close sil-
ver nanospheres. Middle: molecules in-between undergo a
quadrupolar excitation resulting in a luminescence signal at a
lower wavelength (green). Right: excitation and emission of
a single molecule.

space14. These new engineering possibilities pave the
way for the development of highly directed single pho-
ton sources and other applications.4,15

However, in all the aforementioned studies the in-
teraction of optical nanoantennas with the quantum-
mechanical system has been discussed by resorting to
more or less appropriate approximations. To be specific,
apart from a few exceptions16–18, the effect of higher or-
der multipole fields in the vicinity of the antenna has
been restricted to a pure electric dipole field; although
experimental indications for the influence of higher order
multipole fields have been reported in the literature.19,20
The restriction to electric dipole fields seemed to be an
obvious and quite reasonable approximation, since in free
space the interaction of a quantum-mechanical system
with higher-order multipole fields is orders of magnitude
weaker than compared to that of an electric dipole field;
as discussed in detail below. Moreover, none of the afore-
mentioned studies considers the modification of the dy-
namics of the quantum-mechanical system subject to a
higher-order excitation. However, subsequent calcula-
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tions will show that this is of crucial importance.
With the self-imposed limitation to consider the field

close to an optical nanoantenna as to be electric dipo-
lar, the potential of optical nanoantennas is unnecessar-
ily restricted because there is a much larger flexibility in
tailoring their near-field. In this work the potential of op-
tical nanoantennas to significantly enhance higher-order
multipole fields in the vicinity of the nanoantenna is con-
sidered. The enhancement is such strong that it can be
essential in the interaction with a quantum-mechanical
system. Most notably, it enables the significant excita-
tion of transitions which are typically considered forbid-
den in free-space.

To analyse such processes, a theoretical framework nec-
essary to calculate non-dipolar transitions of quantum-
mechanical multilevel systems in the vicinity of optical
nanoantennas is established in this contribution. These
non-dipolar transitions, often termed as forbidden ones,
can be tremendously enhanced due to large higher-order
field components16,18,21,22. In passing we note that
these higher-order components may also be used to ex-
cite dark modes in plasmonic systems using strong field
gradients.23 Such modes may also couple to quantum
systems24–26. The emission in the vicinity of nanoanten-
nas is also strongly modified with respect to free space27.
Thus, to understand the dynamics of a quantum system
it is essential to also account for these modified emission
characteristics. As an example, a three-level system that
is excited through an electric quadrupole transition and
relaxes via two consecutive electric dipole transitions is
investigated in detail in this contribution.

The paper is organized as follows. At first, a mathe-
matical framework to discuss the enhancement of higher-
order multipole fields in the vicinity of optical nanoanten-
nas is introduced. For the sake of definiteness, the discus-
sion is exemplified at a suitably chosen nanoantenna, i.e.
a nanoantenna which strongly enhances the quadrupole
field. Next, the modification of excitation rates in quan-
tum mechanical systems due to this quadrupolar en-
hancement will be investigated. Finally, the hybrid sys-
tem consisting of an optical nanoantenna and a quantum-
mechanical three-level system will be studied in detail. A
detailed appendix provides further explanations and ex-
plicit derivations of formulas used in the main body of
the manuscript.

It is the purpose of this contribution to show that
a properly designed nanoantenna can excite dipole for-
bidden transitions in three-level systems due to the en-
hanced higher-order multipole fields. It will be shown
that the dynamics of the system are strongly altered by
the presence of the nanoantenna and cannot be under-
stood by the quadrupolar enhancement alone. Although,
only shown here at the example of a three-level system,
more complicated quantum systems can equally be con-
sidered and the framework presented herein can be ad-
justed to different possible experimental configurations.

II. ENHANCEMENT OF HIGHER-ORDER
MULTIPOLE FIELDS

Previously, higher-order multipole transitions in
hydrogen-like atoms have usually been assumed to be for-
bidden (except for extreme situations28), since the cor-
responding contributions as provided by an excitation
field usually used in most cases, i.e. a plane wave, are
much weaker than the dipolar ones. This can be esti-
mated from a back of the envelope calculation that as-
sumes some characteristic values. A stricter derivation
can be found in, e.g., Ref. 29. The electric field of a
plane wave varies spatially as exp [i(k · x)] ≈ 1 + i(k · x)
in the limit of k · x → 0. Here k is the wavevector that
can be assumed as |k| ≈ 107 m−1 for visible light and the
characteristic spatial extent of the atomic system being
⟨|x|⟩ ≈ Za0 ≈ 10−10 m for hydrogen-like atoms. Only
the first term in the expansion has been retained, cor-
responding to the electric dipole component. In most
cases this approximation is reasonable since the first or-
der term in the Taylor expansion is three orders of magni-
tude larger than the second term, which is attributed to
both the electric quadrupole and magnetic dipole fields.
Hence, for the given spectral domain and the usually con-
sidered spatial extent of the atomic system, the excita-
tion rates induced by the local quadrupole field of a plane
wave are orders of magnitude smaller than those transi-
tions induced by the electric dipole field. For this reason,
quadrupole transitions are usually said to be inaccessible,
i.e. they are forbidden. Clearly, components of octupolar
or higher order are even weaker.

In the presence of an optical nanoantenna the situation
changes dramatically. Such plasmonic structures support
highly localized near-fields that are characterized by huge
gradients. Using a multipole expansion in spherical co-
ordinates, the electric field in a coordinate system with
origin r0 can be expressed as

E (x, ω) =
∑
m,n

[pmn (ω; r0)Nmn(x− r0, ω) +

qmn (ω; r0)Mmn(x− r0, ω)] (1)

with vector spherical harmonics Nmn and Mmn following
the notation of Ref. 30. Equation 1 is identical to a mul-
tipole expansion in spherical coordinates (except some
prefactors) with pmn and qmn being the complex electric
and magnetic multipole coefficients, respectively31. The
order n = 1 corresponds to electric and magnetic dipoles,
whereas n = 2 corresponds to quadrupoles and so on.

For illustration purposes, in what follows the focus
shall lie on the electric quadrupole. Moreover, to sim-
plify the subsequent discussion, the more familiar Carte-
sian quadrupole components Qij will be used. They can
be obtained from the electric quadrupole coefficients pm2

using linear transformations32.
As a referential optical nanoantenna that supports

strong local electric quadrupole fields, an optical
nanoantenna consisting of two strongly coupled silver
nanospheres, sometimes termed as dimer, is investigated.
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FIG. 2. (Color online) a) Integrated enhancement factor ηxz
as a function of excitation wavelength for two separations
of the dimer nanospheres under plane wave illumination as
sketched in b). The area Ω pertinent for integration was
chosen to be ∆z = 30 nm and ∆x = 13 nm and fixed at
y = 0 [white box in b)]. A broadband enhancement of about
six orders of magnitude for a separation of d = 3 nm can
be observed which peaks at 370 nm and 437 nm. b) The
local quadrupole enhancement ηloc

xz (r0) in the x-z-plane for
d = 3 nm and at λ = 437 nm. c) Zoomed view of b) (color
bar is maintained) where two symmetric stripes of maximum
enhancement can be observed.

The two silver nanospheres have a radius of 30 nm and
are separated by either 3 nm or 10 nm. With such a sep-
aration, quantum effects and/or a possible nonlocal ma-
terial properties of the silver nanosphere may only con-
stitute a minor contribution which we do not consider
here33,34; material parameters were taken from Ref. 35.
The assumed geometry is in reach of state-of-the-art fab-
rication techniques and can even be scaled to large ar-
rays of strongly coupled nanospheres.36 It is well estab-
lished that the scattering cross section of such a dimer
structure exhibits a strong quadrupole contribution for a
plane wave illumination direction parallel to the connect-
ing line of the nanospheres32. However, the enhancement
of local quadrupole fields, as probed by the quantum me-
chanical system, was found to be strongest if the two
nanospheres are illuminated perpendicular to the con-
necting line (chosen to be the x-axis) with a polarization
of the electric field parallel to it (see Figure. 2). However,
the quadrupole contribution to the far field is negligible
for this illumination scenario.

Considering plane wave illumination in the given coor-
dinate system, the only nonvanishing component of the
related quadrupole tensor in free space is Qfs

xz. This
particular coefficient is linked to the multipole expan-
sion coefficient as used in Eq. 1 via Qxz = i√

6
(p−12 −

p12). Therefore, the local quadratic enhancement of a
quadrupole field may be defined as the ratio ηlocij (r0) =∣∣Qna

ij (r0)/Q
fs
xz(r0)

∣∣2 . One may also define the integrated

enhancement factor ηij =
∫
Ω
ηlocij (r0) dV with respect to

a certain domain Ω. Note that for enhancements obeying
certain symmetries it is convenient to regard a lower di-
mensional integration. Throughout this manuscript, the
superscripts ’fs’ and ’na’ designate the free-space and the
nanoantenna scenario, respectively.

Figure 2 a) shows ηxz as a function of excitation wave-
length for two different separations of the nanospheres.
The dimer is illuminated by a plane wave as sketched in
Fig. 2 b). It can clearly be seen that for a separation of
3 nm ηxz has a maximum of 1.6×106 at 437 nm. Because
it is strongest, we will exclusively focus on this resonance.
For comparison Fig. 2 a) also shows ηxz for a nanosphere
separation of 10 nm. The integrated enhancement fac-
tor is approximately two orders of magnitude less than
compared to the 3 nm separation. Therefore, it is ob-
vious that the enhancement of the electric quadrupole
contribution with respect to the near field stems from the
strong coupling of the two nanospheres, which critically
depends on their separation. All other components of ηij
are orders of magnitude less than ηxz and shall therefore
be neglected here. Figure 2 b) shows ηlocxz (r0) in the xz
plane for a 3 nm separation at a wavelength of 437 nm.
The enhancement of the electric quadrupole contribution
takes place in a narrow spatial domain between the sur-
faces of the two nanospheres. In Fig. 2 c), which displays
a zoomed view of b), it can be observed, that ηlocxz consists
of two symmetric stripes of approximately 5 nm width.

III. FORBIDDEN TRANSITIONS

After having considered the enhancement of the lo-
cal electric quadrupole field near the nanoantenna, the
resulting enhancement of quadrupole transition rates
will now be examined. The transition rates from the
ith to the jth eigenstate of a non-relativistic quantum-
mechanical system with unperturbed Hamiltonian H0

follows Fermi’s golden rule

Γij =
2π

~2
|⟨i|V |j⟩|2 {δ (ωij − ω) + δ (ωij + ω)} . (2)

Here, the time-harmonic interaction potential VI =
e−iωtV (x) + eiωtV †(x) is assumed to be a small pertur-
bation. Within this framework, the action of an electro-
magnetic field on an electron with momentum operator
p is given by the minimal coupling interaction potential
VI = − e

mA · p + h.c.29, see also Appendix B 1. Here,
the weak-field approximation is applied and hence the
ponderomotive potential e2

2mA2 shall be neglected. The
electromagnetic fields are related to the vector potential
A by B = curlA and E = iωA − gradU . Choosing the
Coulomb gauge where U ≡ 0 can always be achieved,
the electric field is given by E = iωA.

Furthermore, a decomposition of the interaction po-
tential yields VI = − ie

~ {[H0,A · x] + [A, H0]x}. In this
form, the terms can be directly interpreted as electric
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and magnetic coupling terms, V = Ve + Vm with

Ve = − e

~ω
[H0,E · x], Vm =

µB

~
L ·B (3)

where µB = e~
2m is Bohr’s magneton and L = x × p

denotes the angular momentum operator. A derivation
of this decomposition can be found in Appendix B 2.

Without loss of generality, the analysis shall be re-
stricted to electric transitions. Referring to Eq. 1 and the
relation Mmn(x)·x = 0, the electric interaction potential
Ve can be fully characterized by the complex multipole
coefficients pmn and the related vector spherical harmon-
ics Nmn. Using the definition of the Nmn following the
notation of Ref. 30, one finds the explicit expression

E · x =
∑
m,n

pmn
n(n+ 1)

k
jn(kr)P

m
n (cos θ) exp(imφ) (4)

where jn denotes spherical Bessel functions and Pm
n as-

sociated Legendre polynomials. The latter expression
holds in the coordinate system of the quantum system,
i.e. for r0 = 0.

As mentioned earlier, this spherical representation can
also be transformed to a Cartesian one and the mo-
ments can locally be related to the coefficients of a Tay-
lor expansion, E · x ∝

∑
n

∑n
i...k Qi...kx

i . . . xk. Then,
it becomes evident why the quadrupole coupling term
(n = 2) is related to the near field gradients of the elec-
tric field: Qij ∝ ∂i∂j (E · x). However, care has to be
taken regarding the normalization of the Qij which is not
consistent throughout the literature. For the calculations
in the main body of the manuscript, we have chosen the
notation as given in Ref. 32.

Combining Eqs. 1 - 3, the transition rates, related
to different multipole orders, can be computed directly
from a given field distribution. Hence, the transition rate
at the atomic site r0, resulting from the electric poten-
tial Ve, is proportional to the square modulus of a linear
combination of the multipole coefficients pmn, i.e.

Γij(r0) =
2πe2

~2

∣∣∣∣∣∑
n,m

pmn(r0) ⟨i|Nmn · x |j⟩

∣∣∣∣∣
2

δ (ωij ± ω) .

(5)
Equation 5 establishes the link between the enhance-

ment of higher order electric transitions in a quantum-
mechanical system and contributions of higher order mul-
tipoles to the local field as investigated in Fig. 2. There-
fore, the previously investigated optical nanoantenna can
be used to increase the strength of electrical quadrupole
transitions in a quantum mechanical system.

IV. MODIFIED EMISSION
CHARACTERISTICS

After having demonstrated that near optical nanoan-
tennas the quadrupole field can be enhanced by many or-
ders of magnitude, the focus will now be directed to the

effect of these multipole contributions on the dynamics
of the entire quantum-mechanical system. For simplicity,
a three-level system will be considered in the following,
which is excited through an electric quadrupole transition
and decays via two consecutive electric dipole transitions,
see Fig. 3 a). It must be noted that it is reasonably as-
sumed herein that only the quadrupolar fields contribute
to the quadrupole transition, i.e. the transition is dipole-
forbidden. If this assumption does not hold, the inter-
action to other enhanced multipole components of the
field has to be taken into account following Eq. 5. As an
example, a comparison to local dipolar enhancements is
given in Appendix A. In the subsequent discussion it will
be shown how the emission characteristics of the entire
system are modified in the presence of the nanoantenna.
As a system of reference, a dimer with a distance of 3 nm
between the silver nanospheres has been chosen.

A. Dynamics of the Three-Level System

The dynamics of the three-level system are governed
by the following rate equations. They describe the pop-
ulation of the three energy levels, i.e.

ṅ0 = γ10 · n1 − Γ02 · n0 ,

ṅ1 = γ21 · n2 − γ10 · n1 , and

ṅ2 = Γ02 · n0 − γ21 · n2 .

Here, the γij denote the spontaneous decay rates from
the ith to the jth level, whereas Γ02 denotes the excita-
tion rate of the quadrupole transition. The quadrupole
transition takes place at a wavelength of λ02 = 437 nm,
for which the previously investigated optical nanoan-
tenna provides the maximal enhancement of an electric
quadrupole field [see Fig. 2 a)].

In the system under investigation, quadrupolar emis-
sion processes at λ02 are neglected37, because the spon-
taneous decay from the second to the first level is as-
sumed to be much faster. The emission wavelength of the
first dipole transition is assumed to be λ21 = 3.47 µm;
consequently, the second dipole transition takes place at
λ10 = 500 nm. For both dipole transitions, stimulated
processes are neglected.

In free space and under plane wave illumination with
unit intensity, the ratios Γfs

02/γ
fs
21 = 10−5 and γfs

10/γ
fs
21 =

10−2 were chosen. These rates correspond to real physi-
cal systems as outlined in Appendix C.

To investigate the enhancement of the efficiency of
the quadrupole transition due to the nanoantenna, the
amount of light spontaneously emitted at λ10 = 500 nm
per unit time shall serve as a figure of merit. There-
fore, the rate equations are solved in equilibrium. In this
regime, luminescence is given by ṅrad

1 = γrad
10 n1, where

γrad
10 is the spontaneous radiative decay rate. The total

decay rate is given by the relation γ10 = γrad
10 + γnonrad

10 ,
where γnonrad

10 describes the nonradiative decay rate.
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ṅrad,na

1
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FIG. 3. a) Scheme of the quantum mechanical system that
is placed in the vicinity of the nanoantenna. b) Local en-
hancement of the luminescence, i.e. ṅrad,na

1 /ṅrad,fs
1 , in the

x-z-plane. Because of saturation, the enhancement is not as
strong as expected from the quadrupole enhancement alone.
c) Luminescence enhancement as a function of the intensity
at the location x = 0 nm, z = 4 nm. The dashed lines corre-
spond to predictions for low and high intensities as discussed
in section IVB (i) and (ii).

Note, in this study in free space γfs
10 = γrad,fs

10 , and
γnonrad,fs
10 = 0. On the other hand, in the presence of the

nanoantenna γnonrad,na
10 is merely determined by the ab-

sorption in the metal. From the rate equations in steady
state and 1 = n0 + n1 + n2, one can solve for n1 finding

ṅrad
1 = γrad

10

γ21 Γ02

γ10 γ21 + γ21 Γ02 + γ10 Γ02
(6)

which holds both in free space and in the vicinity of the
nanoantenna. Since the quadrupole enhancement of the
electric field varies spatially, the same holds for Γ02. Fur-
thermore, the presence of the nanoantenna alters the lo-
cal density of states. Thus, the spatial dependence of the
spontaneous decay rates γij also has to be considered.

Within the weak atom-field coupling regime,
the spontaneous decay rates are given as

γij = 2ω2

~ϵ0c2 |dij |2 ℑ [G(r0, r0, ωij)], where G is the
component of the Green’s tensor corresponding to
the direction of the dipole moment dij of the specific
transition27. The Green’s tensor is calculated at the
position r0 of the quantum system. Using this relation,
the decay rates in the vicinity of the nanoantenna γna

ij

are related to the decay rates in free space γfs
ij via

γna
ij /γ

fs
ij = ℑ [Gna(r0, r0, ωij)] /ℑ

[
Gfs(r0, r0, ωij)

]
.

Since Qxz is the dominant quadrupole component, the
emission from the dipole transitions is assumed to be
either x- or z-polarized; hence γna

ij is the arithmetic mean
of these two contributions.

In the subsequent discussion, ṅrad
1 is chosen as the fig-

ure of merit, assessing how efficiently the emission at
λ10 can be raised due to the enhancement of the elec-
tric quadrupole fields. Figure 3 b) shows ṅrad,na

1 /ṅrad,fs
1 .

It can be seen that ṅrad,na
1 can be enhanced by over

four orders of magnitude relative to free space. As ex-
pected, in regions where the quadrupole enhancement is
the strongest, the luminescence is strongly enhanced as
well. However, due to saturation effects and nonradiative
losses, characteristic values of the luminescence rates are
about two orders of magnitude lower than the quadrupole
enhancement. This can be understood in terms of differ-
ent limiting cases of Eq. 6 and will be discussed in the
following.

B. The Effect of Excitation Intensities on the
Luminescence Enhancement

Naturally, the chosen ratios of the rates affect the lu-
minescence enhancement. However, the excitation rate
Γ02 depends not only on the geometry but also on the
intensity. Using Eq. 6, one may estimate the lumines-
cence enhancement ṅrad,na

1 /ṅrad,fs
1 by the main contribu-

tions given in the nominator for free space and in the
vicinity of the nanoantenna with respect to different in-
tensities:

ṅrad,na
1

ṅrad,fs
1

=
γrad,na
10

γrad,fs
10

· Γ
na
02

Γfs
02︸ ︷︷ ︸

Purcell effect and
quadrupole enhancement

· γfs
10 γ21 + γ21 Γ

fs
02 + γfs

10 Γ
fs
02

γna
10 γ21 + γ21 Γna

02 + γna
10 Γna

02︸ ︷︷ ︸
dynamics of quantum system

. (7)

In this form it tends to be evident that not only the en-
hancement of the radiative rate of the luminescing tran-
sition, γrad,na

10 /γrad,fs
10 , has to be taken into account as well

as the quadrupole enhancement Γna
02/Γ

fs
02 but also the dy-

namics of the quantum system given in the last term in
Eq. 7. In passing we note that the enhancement of ra-
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diative rates in an environment is usually termed Purcell
effect.

As discussed before, the excitation rate in free space
at an intensity I0 was assumed to be Γfs

02 (I = I0) =
10−5γfs

21. Also γ21 = 102γfs
10 has been chosen implying

Γfs
02 (I = I0) = 10−3γfs

10. Furthermore, in the vicinity
of the nanoantenna γ10 gets also hugely enhanced and
γna
10 ≫ γ21 holds. Equation 7 can be understood for dif-

ferent limiting cases of low, intermediate, or high inten-
sities. This is done in the following and will explain the
results found in Fig. 3 in detail.

(i) Low Intensities. First of all, one might consider
the case of very low intensity, Γ02 ≪ γij both in free
space and close to the nanoantenna. Then, one has

ṅrad,na
1

ṅrad,fs
1

≈ γrad,na
10

γrad,fs
10

· Γ
na
02

Γfs
02

· γ
fs
10 γ21

γna
10 γ21

=
γrad,na
10

γna
10

· Γ
na
02

Γfs
02

= antenna efficiency × quadrupole enhancement

since in free space γfs
10 = γrad,fs

10 . One can see that the an-
tenna efficiency γrad,na

10 /γna
10 is a limiting factor which will

also naturally hold for the other limiting cases. Further-
more, the luminescence enhancement is basically given by
the quadrupole enhancement and can be calculated with-
out consideration of the internal dynamics. Thus one can
anticipate that the enhancement is most pronounced in
this intensity regime. If the intensity is stronger, one can
expect that the internal dynamics act as a bottleneck
which will be examined in the following.

(ii) High Intensities. Now the intensity will be as-
sumed to be so high that in free space and in the vicinity
of the nanoantenna Γ02 ≫ γij holds. Then,

ṅrad,na
1

ṅrad,fs
1

≈ γrad,na
10

γrad,fs
10

· Γ
na
02

Γfs
02

· γ21 Γ
fs
02

γna
10 Γna

02

=
γrad,na
10

γna
10

· γ21

γrad,fs
10

= antenna efficiency × 102

consistent with Fig. 3 c) for I ≫ I0. Interestingly the
enhancement is now independent of the quadrupole en-
hancement. This results from the fact that in this inten-
sity regime also in free space the excitation is the fastest
process.

(iii) Intensities comparable to I0. Finally, one may
consider an intermediate case where I ≈ I0. Here, Γfs

02 ≪
γ21 but one may still assume that Γna

02 ≫ γ21. This is the
case in the central region of the nanoantenna which can
be seen in Fig. 2 c) where the quadrupolar enhancement
is shown to be in the order of 106. Thus,

ṅrad,na
1

ṅrad,fs
1

≈ γrad,na
10

γrad,fs
10

· Γ
na
02

Γfs
02

· γ
fs
10 γ21

γna
10 Γna

02

=
γrad,na
10

γna
10

· γ21
Γfs
02

= antenna efficiency × 105 . (8)

It is important to note that the results outlined in
Fig. 3 b) correspond to the discussed intermediate inten-
sity limit. There, maximum luminescence enhancements
in the order of 5 . . . 6 · 104 were found. Looking at Eq. 8,
this implies an antenna efficiency of approximately 50%
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FIG. 4. The antenna efficiency γrad,na
10 /γna

10 . It acts as a nat-
ural limiting factor for the luminescence enhancement. Note-
worthy, with respect to the actual form of the quadrupole
enhancement outlined in Fig. 2 c), a perfect agreement of the
luminescence enhancement predicted by equation Eq. 8 and
the results given in Fig. 3 b) can be seen.

in-between the nanospheres for the luminescence transi-
tion. This could be confirmed by simulations shown in
Fig. 4.

It can be stated that under the given assumptions, the
dynamics of the quantum system had to be taken into
account to understand the luminescence enhancement of
the system driven by a quadrupolar excitation. Only in
the weak excitation limit, the luminescence enhancement
simplifies to ṅrad,na

1 /ṅrad,fs
1 = ηlocxz ·γrad,na

10 /γna
10 . From this

relation it can clearly be seen that the local lumines-
cence enhancement is directly proportional to the local
quadrupole enhancement ηlocxz . For a sufficiently strong
excitation field, however, the entire process saturates and
the overall enhancement decreases.

V. CONCLUSION

In conclusion, it was shown that optical nanoantennas
can effectively enhance higher order multipole transitions
which are typically considered forbidden in free space.
This can be achieved by enhancing higher order multipole
fields near the antenna. A quadrupole transition as the
dominant excitation channel in a three-level system was
considered. It was demonstrated how the enhancement
of this transition can significantly intensify subsequent
emission processes with respect to altered emission char-
acteristics. Since the effects under consideration depend
on geometrical parameters, the properties of the optical
nanoantenna can be tailored and hence allow for direct
implementations in spectroscopic schemes. It must, fur-
thermore, be emphasized that the example of the isolated
dimer is just a specific case of what is possible with ad-
vanced optical nanoantennas. It can be anticipated that
this work will give impetus for further research on such
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hybrid systems as well as plasmonic engineering.
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APPENDIX

Appendix A: Dipole vs. Quadrupole Enhancement

In the considered model system it was assumed that
the energies of each transition are separated such that
it is unlikely that different transitions are competing for
a certain excitation. So, only the excitation rate with
respect to the quantum system in free space was com-
pared. One may also ask the question what happens if
two transitions, namely a dipole and a quadrupole one,
are energetically very close. Can one then make the lat-
ter transition rate comparable or even stronger than the
dipole transition? This should be possible when a cer-
tain eigenmode of a structure can be tailored to have
a strong quadrupole and only a negligible dipole field.
For the dimer antenna under consideration this is not
the case and was not intended. Here, also the electric
dipole field gets enhanced. The result of a corresponding
calculation is outlined in Fig. 5. There one can see that
the electric dipole field gets enhanced approximately four
orders of magnitude. This is still a few orders of mag-
nitude smaller than the quadrupolar one. However, the
difference for this particular antenna might not suffice to
enhance a quadrupole transition to be stronger than a
dipolar one.

In general quantum systems, transitions might on the
other hand be driven by a superposition of several multi-
polar fields following Eq. 2, i.e. for Rydberg atoms. An
enhanced quadrupolar field component then might allow
an additional energy supply channel to such a system.
However, as in the discussed three-level system, an en-
hancement of higher order field componenents must be
understood in terms of the whole dynamics of the quan-
tum system. The approach might be most beneficial if
this additional energy supply can account for an existing
bottleneck for processes one wishes to enhance.

Appendix B: Minimal Coupling

In the main manuscript, the derivation of the mini-
mal coupling potential VI = − e

mA ·p was not presented,
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FIG. 5. Local dipole enhancement factor ηloc,dip
x (r0) =∣∣dnax (r0) /d

fs
x (r0)

∣∣2 for the main dipole contribution dx. The
configuration is the same dimer nanoantenna as used be-
fore with the same excitation wavelength λ = 437 nm. The
dipole enhancement is approximately two orders of magnitude
smaller than the quadrupolar one.

as well as its decomposition into an electric and mag-
netic part given by Eq. 3. Although, VI can be found in
the literature and the derivation of its decomposition is
straight forward, it will be outlined in the following two
subsections.

1. The Interaction Potential

The action of an electromagnetic field on a given sys-
tem within the framework of nonrelativistic quantum me-
chanics is realized due to a replacement in the unper-
turbed Hamiltonian in the following way:

H0 (p,x) → H (p− eA (t,x) ,x) + eU (t,x)

≡ H0 (p,x) + VI (p,x, t)

which is called minimal coupling29,38. Throughout the
analysis, a hydrogen-like Hamiltonian of the form

H0 (p,x) =
1

2m
p2 − 1

4πϵ0

Z e2

r
(B1)

will be assumed.
The relation of the fields to the electrodynamic poten-

tials is given by

B = curlA and E = −∂tA− gradU . (B2)

Choosing the Coulomb gauge in which

divA = 0 and U ≡ 0 (B3)

holds if ρ = 0 and j = 0, one finds for the given Hamil-
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tonian

H (p,x, t) =
1

2m
(p− eA (x, t))

2 − 1

4πϵ0

Z e2

r
+ eU (x, t)

=
1

2m

[
p2 − ep ·A− eA · p+ e2A2

]
− 1

4πϵ0

Z e2

r

≈ 1

2m
p2 − 1

4πϵ0

Z e2

r
− e

m
A · p

≡ H0 + VI . (B4)

where it was used that in the given gauge U = 0 can
always be achieved and p ·A = A · p. Furthermore, the
term in A2 has been neglected. This part corresponds to
the Ponderomotive force.

2. Electric and Magnetic Coupling - a
Decomposition

Now that the interaction potential VI = − e
mA · p is

known, it is desirable to further split it into an electric
and magnetic part. This approach eases later interpreta-
tion such as the attribution of transitions to electric and
magnetic multipoles.

First of all, one finds

A · p =
im

~
A · [H0,x]

=
im

~
{A ·H0x−A · xH0 +H0A · x−H0A · x}

=
im

~
{[H0,A · x] + [A,H0]x} .

Now, one can state for the first term

⟨m| [H0,A · x] |n⟩ = ~ωmn ⟨m|A · x |n⟩ .

Because of E = −∂tA, this term can be interpreted in
a time-harmonic dependency of the fields as the electric
contribution. Then, E = iωA and the electric coupling
may be introduced as

Ve = − e

m

im

~
[H0,A · x]

= − e

~ω
[H0,E · x] . (B5)

On the other hand,

[A,H0] =
1

2m

{
Ap2 − p2A

}
= − ~2

2m
∆A =

~2

2m
curlB

where the curl is acting only on B. It is further

[A, H0]x =
~2

2m
curlB · x =

~2

2m
(x×∇) ·B

= i
µB

e
L ·B

where µB = e~
2m , p = −i~∇ and L = x×p was used. So,

it is natural to define

Vm = − e

m
· im
~

· iµB

e
L ·B =

µB

~
L ·B (B6)

as the magnetic coupling.

Appendix C: On the Choice of Energy Ranges and
Decay Rates

The numbers chosen for the calculations were moti-
vated by order-of-magnitude estimations for quantum
systems, namely hydrogen-like atoms and dye molecules.
In this section, the choice of transition energies and used
rates will be related to existing quantum systems. The
suggested systems may be used in experiments.

Energy Ranges

A quadrupolar transition can be seen as the sum over
all possible consecutive dipolar transitions. E.g. for the
quadrupolar potential V (x) ∝ xy one finds

Γij ∝ |⟨i|xy |j⟩|2 =

∣∣∣∣∣∑
k

⟨i|x |k⟩ ⟨k| y |j⟩

∣∣∣∣∣
2

.

Hydrogen-like atomic systems shall be considered now.
There, such transitions may be realized by the transition
from an s to a d orbital using a p orbital as main inter-
mediate step. These three levels then form an effective
three level system as the studied one.

The chosen energies correspond to such systems:
Potassium has a quadrupolar transition λ4s→3d ≈ 446nm
with intermediate step λ4s→4p ≈ 770 nm followed by
λ4p→3d ≈ 1.18µm. The next alkali atom is Rubid-
ium with λ5s→4d ≈ 516nm, λ5s→5p ≈ 780nm and
λ5p→4d ≈ 1.4µm. For Cesium, one finds λ6s→5d ≈
685 nm, λ6s→6p ≈ 894 nm and λ6p→5d ≈ 2.9µm.

However, Lithium and Sodium have higher quadrupo-
lar transition energies with wavelengths around 300nm.
Thus for such atoms an experimental realization may not
be feasible - gold and silver lose their metallic character
for such high photon energies.

Decay Rates

At a certain saturation intensity Is, dipolar excita-
tion rates become comparable to spontaneous emission
rates39,40. For a two-level-system, Is is given by the in-
tensity at which both states are equally likely.

Hydrogen-like atoms exhibit an Is in the order of tens
of W/m2 at optical frequencies. For instance, Rubidium
has an Is = 16.4W/m2 characterizing the 5s-5p transi-
tion. On the other hand, Is may be more than 107 W/m2

for dye molecules40.
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At intensities above Is, the excitation rates for dipolar
excitations become faster than their spontaneous coun-
terparts. Quadrupolar excitation rates are for optical
frequencies in the order of six to seven orders of mag-
nitude smaller than dipolar ones. Thus, at intensities
I0 ≈ 103...4Is, one might expect a quadrupole excitation
rate to be in the order of Γfs

02 (I0) ≈ 10−3γfs
10 as was cho-

sen in the calculations.
The normalized intensity range in Fig. 3 c), I/I0 ≈

10−4 . . . 104 corresponds to spectroscopic measurements.
Intensities employed in pulsed systems are in the order
of 1012 . . . 1014 W/m2 and for continuously operating sys-
tems with plasmonic structures 106 . . . 108 W/m2. Hence,

for dye molecules pulsed measurements are at an inten-
sity of Ipulse ≈ 106Is ≈ 102...3I0 and continuous wave
measurements are at Icw ≈ Is ≈ 10−3···−4I0. As it was
shown in Fig. 3 c), in-between these intensity ranges
different limiting cases take place as discussed in sec-
tion IV B.

Furthermore, the fast nonradiative relaxation rate
from state |2⟩ to |1⟩, γfs

21 was assumed to be the fastest
process in free space. It was assumed to be independent
of the environment, γfs

21 ≡ γna
21 = 102γfs

10. This assump-
tion corresponds to fast thermal relaxations of excited
atomic systems.

1 A. Frantsesson and V. Zuev, Journ. Russ. Laser Res. 22,
437 (2001).

2 L. A. Blanco and F. J. García de Abajo, Phys. Rev. B 69,
205414 (2004).

3 J. Zuloaga, E. Prodan, and P. Nordlander, ACS Nano 4,
5269 (2010).

4 R. Esteban, T. V. Teperik, and J.-J. Greffet, Phys. Rev.
Lett. 104, 026802 (2010).

5 A. Mohammadi, F. Kaminski, et al., Journ. Phys. Chem.
C 114, 7372 (2010).

6 S. V. Lobanov, T. Weiss, et al., Phys. Rev. B 85, 155137
(2012).

7 K. Lee, X. Chen, et al., Nat. Phot.(2011).
8 M. Abb, P. Albella, et al., Nano Lett. 11, 2457 (2011).
9 A. V. Kabashin, P. Evans, et al., Nat. Mat. 8, 867 (2009).

10 V. E. Ferry, L. A. Sweatlock, et al., Nano Lett. 8, 4391
(2008).

11 C. Rockstuhl and F. Lederer, Appl. Phys. Lett. 94, 213102
(2009).

12 O. Muskens, V. Giannini, et al., Nano Lett. 7, 2871 (2007).
13 R. Filter, J. Qi, et al., Physical Review B 85, 125429

(2012).
14 A. Curto, G. Volpe, et al., Science 329, 930 (2010).
15 T. H. Taminiau, F. D. Stefani, F. B. Segerink, and N. F.

van Hulst, Nature Photonics 2 (Apr. 2008).
16 J. R. Zurita-Sánchez and L. Novotny, J. Opt. Soc. Am. B

19, 1355 (Jun 2002).
17 S. Karaveli and R. Zia, Phys. Rev. Lett. 106, 193004

(2011).
18 A. M. Kern and O. J. F. Martin, Phys. Rev. A 85, 022501

(Feb 2012).
19 M. Moskovits and D. P. Dilella, J. Chem. Phys. 77, 1655

(Aug. 1982).
20 T. Kawazoe, K. Kobayashi, et al., Phys. Rev. Lett. 88,

067404 (Jan 2002).
21 S. Tojo and M. Hasuo, Phys. Rev. A 71, 012508 (Jan 2005).
22 K. Deguchi, M. Okuda, A. Iwamae, H. Nakamura,

K. Sawada, and M. Hasuo, Journal of the Physical Society

of Japan 78, 024301 (2009).
23 M. I. Stockman, S. V. Faleev, et al., Phys. Rev. Lett. 87,

167401 (Sep 2001).
24 K. Li, X. Li, et al., Phys. Rev. B 71, 115409 (Mar 2005).
25 J.-Y. Yan, W. Zhang, et al., Phys. Rev. B 77, 165301 (Apr

2008).
26 M. Liu, T.-W. Lee, et al., Phys. Rev. Lett. 102, 107401

(Mar 2009).
27 W. Vogel and D. G. Welsch, Quantum Optics (Wiley,

2006).
28 M. Bhattacharya, C. Haimberger, and N. P. Bigelow, Phys.

Rev. Lett. 91, 213004 (2003).
29 I. Hertel and C. Schulz, Atom-, Molekül- und Optische

Physik (Springer Verlag, Berlin, 2007).
30 Y. Xu, Applied optics 34, 4573 (1995).
31 C. Rockstuhl, C. Menzel, et al., Phys. Rev. B 83, 245119

(2011).
32 S. Mühlig, C. Menzel, et al., Metamaterials 5, 64 (Jun.

2011).
33 F. J. Garcia de Abajo, The Journal of Physical Chemistry

C 112, 17983 (2008).
34 J. M. McMahon, S. K. Gray, et al., Phys. Rev. Lett. 103,

097403 (Aug 2009).
35 P. B. Johnson and R. W. Christy, Phys. Rev. B 6, 4370

(1972).
36 A. Cunningham, S. Mülig, C. Rockstuhl, and T. Bügi, The

Journal of Physical Chemistry C 115, 8955 (2011).
37 V. V. Klimov and V. S. Letokhov, Phys. Rev. A 54, 4408

(1996).
38 N. Doughty, Lagrangian Interaction: an introduction to

relativistic symmetry in electrodynamics and gravitation
(Addison-Wesley, 1990).

39 H. Metcalf and P. Van der Straten, Laser cooling and trap-
ping (Springer Verlag, 1999).

40 L. Novotny and B. Hecht, Principles of nano-optics (Cam-
bridge Univ Pr, 2006).


