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Abstract

Based on numerical simulations and analytical calculations we formulate a new
conjecture concerning the multipole moments of a rigidly rotating fluid body in
equilibrium. The conjecture implies that the exterior region of such a fluid is not
described by the Kerr metric.

1 Introduction

Bardeen and Wagoner [1] observed in numerical tests in 1971 that the quadrupole mo-
ment of a rigidly rotating disk of dust is always greater than that of the Kerr metric
with the same angular momentum and mass except in the extreme relativistic case,
when they become the same,

Q35| > |QS%ken|- @

As already concluded by Bardeen and Wagoner, the general expectation is that this
also holds for other spacetimes containing a central rigidly rotating perfect fluid. The
recent work of Bradley and Fodor [2] lends support for this in the slowly rotating case.

Itis now interesting to ask the question whether this holds not only for the quadrupole
moment but for every moment,

|Qn| Z |Qn,Kerr| . (2)

In this paper, based upon [3], we will formulate this conjecture and collect evidence
in favor of it from numerical and analytical results. We will make use of geometrical
units withG = ¢ = 1.

2 Formulation of the conjecture

The multipole moments calculated by Fodor et al. in [4] are equivalent to the invari-
antly defined ones by Geroch and Hansen [5, 6] for axially symmetric and stationary
spacetimes. Because of the form of the Ernst potential on the axis, the mass- and
rotation moments are in this context given by

n
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In accordance with relationl(2) we state:
Generalized Quadrupole-Conjecture. For axially symmetric, stationary and asymp-
totically flat spacetimes with angular momentuirmass\/ and multipole momen,,

<1 (4)
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always holds if the spacetime is that of a rigidly rotatingfpet fluid body in equilib-
rium, surrounded by vacuum.

Furthermore, in accordance with our experience, the egusionly reached in the
case of a black hole limit, which is then necessarily an ex¢r&err black hole, see [7].
In general, the exterior spacetime differs from the Kerrroet

3 Evidence
3.1 Newtonian Limit
In the Newtonian limit, a rigidly rotating object has angut@omentum
J=0-Q (5)

with moment of inertia® and angular velocitf. In this limit we can compute a kinetic
energy and define a characteristic velocity via

2Fin = ©-Q% = M- Ughar (6)

Restricting ourselves to axial and equatorial symmetigtian (4) becomes fon =
2.4, ...

@n/Q
Mg,

Ughar < 1v (7)
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which should always hold under the condition of small veiesivchar < 1 provided
on2M'="/2Q 1 is limited.

3.2 Numerical tests

With help of the numerical program described in [8, 9] we wavke to test the conjec-
ture for different equations of state and different topadsgn the case of the quadrupole
and octupole moments. Exemplarily we will show some of ttseiits to underline the
conjecture.

The tests covered three equations of state for spheroatal sbntaining homoge-
neous matter, an MIT-Bag model equation of state for quarttanéollowing [10] and
a model for a completely degenerated ideal neutron gasifimitp[11] and additionally
a quadrupole-test for thin rotating rings.
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Figure 1: A5 for quadrupole moments of strange stars with an MIT-Bag rhegigation
of state and varying masses depending on the ratio of pokguatorial radius.
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Figure 2: Rotating homogeneous rings for different ratibsadlii depending on the
redshift parameter, see [3].

Figured 1 and]2 showl; for the cases of a star with an MIT-Bag model equation
of state and homogeneous rings, respectively.

Figure[3 shows a test in the case of the octupole moment foogeneous stars
with different masses.

3.3 Therigidly rotating disk of dust

The rigidly rotating disk of dust was solved analytically Bgugebauer and Meinel
[12,13]. The associated multipole moments were derivedlstibereafter by Klein-
wachter et al. [14], see also [15]. Figlile 4 shows that in¢hie the conjecture is true
forn = 2...10. Moreover, it is interesting that we havl, > A, ;.
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Figure 3: A3 for homogeneous stars with different masses.
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Figure 4: The rigidly rotating disk of dust: The conjectur@stbeen verified up to
n = 10. The solution depends on a parametei) < p < po = 4.62966 . ..), where
1 < 1 corresponds to the Newtonian limit apd— p leads to the black hole limit,
see [12], [16].



4 Conclusionsand remarks

Since it is easy to construct solutions of the vacuum Einstgjuations violating the
conjecture, e.g. with the algorithm presented by Manko aniz i [17], it will be
interesting to investigate, which requirements on the esiare necessary to ensure
A,, <1 and which are not necessary.

We thank Prof. Reinhard Meinel and Dr. David Petroff for imsm and helpful
discussions.
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