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Stability of the solar tachocline with magnetic fields
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The stability of magnetic fields in the solar tachocline igeistigated. We present stability limits for higher azinaith
wave numbers and results on the dependence of the stabilityedocation of toroidal magnetic fields in latitude. While
the dependence of the wave number with the largest gronghorathe magnetic field strength and the magnetic Prandtl
number is small, the dependence on the magnetic ReynoldserRm indicates that lowest azimuthal modes are excited
for very high Rm. Upon varying the latitudinal position oktmagnetic field belts, we find slightly lower stability liit
for high latitudes, and very large stability limits at latiies belowi0°, with little dependence on latitude in between. An
increase of the maximum possible field was achieved by adalipgloidal field. The upper limit for the toroidal field
which can be stored in the radiative tachocline is then 100€o@pared to about 100 G for a purely toroidal field as was
found in an earlier work.
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1 Introduction A number of authors extended the 2-dimensional hydro-
dynamic formulation of Watson (1981) to include magnetic
The paper is concerned with the magnetic stability of thigelds (e.g. Gilman & Fox 1997; Gilman & Dikpati 2000;
solar tachocline, which is the transition zone between tt@ally 2003; Cally et al. 2003; Dikpati et al. 2004). Most re-
convection zone with chiefly latitudinal gradients in angucently, Arlt et al. (2007) have studied the MHD stability of
lar velocity and the radiative core with nearly uniform rothe lowest non-axisymmetric azimuthal mode in the solar
tation. The thickness is roughly 4% of the solar radius. Heachocline, with a full tachocline rotation profile. An up-
lioseismology has confirmed the strong radial shear withjmer limit for the toroidal magnetic field of about 100 G was
the tachocline and the fairly small radial extent of thateonfound.
(e.g. Basu & Antia 2001). It has been speculated that the true stability limits can
A plausible formation mechanism for the tachocline obe identified only by studying higher azimuthal modes(
magnetic origin was proposed by Rudiger & Kitchatinovn < 10). Gilman & Dikpati (2000) have reported that com-
(1997) and Gough & Mclintyre (1998). The coupling of garatively higher azimuthal modes:(= 4 to 7) turn out
core magnetic field with the differential rotation in the rato be the most unstable ones if the thin toroidal magnetic
diative interior below the convection zone leads to a thifield belt is placed at mid-latitudes. The lowest azimuthal
transition layer, thereby causing toroidal magnetic fieifls modes, however, dominate when the field belt is placed at
about 200 G. As a large class of solar dynamo models agery high or very low latitudes. Brun & Zahn (2006), in
sume the tachocline to be the seat of the solar dynamo (etlgeir examination of the magnetic confinement of the so-
Choudhuri & Gilman 1987; D’Silva & Choudhuri 1993), lar tachocline, found the tachocline becoming unstablh wit
the toroidal field strength of the belts should be of the order dominantn = 1 mode close to the pole, but higher
of 10° G to give rise to the visible emergence of sunspots atodes can be seen to be present at slightly lower latitudes,
the surface at low latitudes. for a toroidal field build-up of roughly a few hundred Gauss.
An early stability analysis of the toroidal magnetic fields  In this Paper, we extend the analysis of Arlt et al. (2007)
in the solar case was done by Caligari et al. (1995) and wisvarious directions. We compute growth rates for higher
followed up by Ferriz-Mas & Schussler (1996). They usedzimuthal modes, show the dependence of the stability on
a one-dimensional flux tube approximation and concludeble field belt position in latitude, and present results from
that the stability limit is in excess d0? G in the tachocline combined toroidal and poloidal magnetic fields.
as well as in the lower convection zone. In a different ap-
roach, nearly every toroidal magnetic field was found to b - .
Enstable at zero rotation by Vandakurov (1972) and Taylg Stability analysis model

(1973). The numerical setup is that of a spherical shell, extend-
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R, =0.7. We are applying the spherical spectral MHD 1200 ' JREEEAR
code by Hollerbach (2000) for the computations. The code .
solves the incompressible MHD equations in Boussinesq ggg |-
approximation; we reduced the numerics to the solution gf $=3000
the linearized induction and momentum equation for the

stability analysis of nonaxisymmetric perturbations ie th% 400 - ,
magnetic fieldp, and the velocity fieldu. The equations & o
lad K - T
%rs 0] 0 ‘ s ~ 2000
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The axisymmetric background rotation velocity profilé:ig'l Dependence of the stability of various azimuthal modes

U = (0, 0, rsin#9) is decoupled from the nonaxisym-m on the magnetic field strength in terms of the Lundquist numbe
. ; X (Rm = 10000, Pm = 1).
metric perturbations, as is the background magnetﬁc
meanings of radius, colatitude, and longitude. Upothe linear computations to higher azimuthal modes and dif-
making the equations non-dimensional, the magnetierent locations of the magnetic field belt in latitude. The
ber S = R,By/\/pn, and the magnetic Prandtl numbersuitable choice for the upper boundary of the non-turbulent
Pm = v/n appear, withv andn being the microscopic vis- tachocline. The results do not actually change very much for
1.4 the equatorial angular velocity at the bottom of the corin Arlt et al. (2007).
vection zone, angt andp the magnetic permeability andthe  The axisymmetric background magnetic fiel =
metric background velocity
U= (0,0, rsinf(1 — as cos®0)) , (3) By = Bysin® f cos? §sin”

The radial boundary conditions for the nonaxisymmet- h_erep andgq control the position qf the maximutsy in

titude. For the following subsections, we get= 2 and

conditions at both radial boundaries. The outer boundary s tor. Si the | tigated modes with> 0
the bottom of the convection zone which provides very hig}. € equator. since the investigated modes en-
magnetic diffusivity and is thus set to vacuum. The inne ¢ i ¢ tial for their stability that the back
boundary has no physical meaning; we still set this to vagyStem, 1t1s not essential tor their stability that the bac
penetrate the solar core deeply (the condition&gts zero) _ _
and poloidal fields can extend into the core without building-1  Azimuthal modes withm > 1

The codg employs Chgpyshev polyngm|als of de_gre?r?odes, the growth rates of the modes are computed and
k for the radial decomposition and spherical harmonics %f
" hich d q I h ol suppose that the mode with the largest growth rate is also
tiies which are decomposed spectrally are the potentialsy, o 4ne which becomes unstable first. The growth rate here
f, g, andh formingu = V x (ee,) + V x V x (fe,)
the radial unit vector. The typical spectral truncation &hs e
while individual Fourier modes were evolved in this IineaB
analysis.

: (4)

Figure 1 shows the dependence of the growth rate on

azimuthal mode numbes for various Lundquist num-

ers corresponding to various background field strengths.

The magnetic Reynolds number was fixe®at = 10 000,

the magnetic Prandtl number wBsn = 1. There is a maxi-

3 Toroidal magnetic fields mum in the set of growth rates at = 5 for magnetic fields
aboveS ~ 1500. There is nearly no dependence of the most

In Arlt et al. (2007), we reported that the solar tachoclineasily excited mode on the Lundquist number, provided the

may be unstable for a field of roughly 100 G. We extendrowth rate is positive.

field B. The symbolsr, 6, and ¢ have the usual
Reynolds numbelRm = R2(2,/7, the Lundquist num- differential rotation ) was fixed at 20%. This value is a
cosity and magnetic diffusivity of the plasma, respectivel small deviations ofv, from the chosen value, as was shown
density, respectively. The rotation profile gives the axisy (0, 0, By) takes forms of
r—R \*
"\Ro—-Ri
whereas describes the strength of the differential rotation.
ic fl t -free. Th tic field f L . '
ric TIoW are siress-res, (e magnetic NIeid laces vacuwn_ resulting in a maximunB, at a latitude of35° from
t},rely decouple from the axisymmetric state in the lineadiz
uum, because we do not expect toroidal magnetic fields %ound setup is in equilibrium.
up currents in the physically non-existing boundary. Instead of searching for the stability limits of individual
; e ompared at givey' in order to save computation time. We
degreeg!, m) for the horizontal decomposition. The quan- P g P
is defined by the inverse e-folding time of the lowest latitu-
40 Chebyshev polynomials and 80 Legendre ponnomiaIt%e
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Fig.2 Dependence of the stability of various azimuthal modegig.4 Dependence of the stability on the position of the mag-

Pm = 0.1, A

m on the magnetic Prandtl numbédifh = 10 000, S = 1800). netic field belt in latitude. Stability lines for magneticadtl num-
bers of 0.1, 1, and 10 are plotted. The symbols ‘A’ and ‘S’ réde
50 ' ! ' the stability of antisymmetric and symmetric flow perturbas,

respectively. The fact that the critical Lundquist numiderdower
Pm are lower, does not mean the field in physical units is weake
since the Lundquist number changes wjth' as does Pm.

3.2 Latitude dependence

GROWTH RATE
n
o
T

The position of the maximun®, in the previous Section

-100 has always been at a latitude 3i°. We now vary the lat-
.‘ itude of the magnetic field belts by varyipgandg in (4).
150 ‘ ‘ ‘ + 14000 The toroidal background field thus faces negative radial
gradients at high latitudes and positive radiagradients
0 2 4 6 8 at low latitudes. The range was from= 48 andq = 1
AZIMUTHAL WAVE NUMBER corresponding to a latitude 6f).8° top = 2, ¢ = 21 cor-
Fig.3 Dependence of the stability of various azimuthal modeeSPONding ta6° latitude, wherey takes only even values
m on the magnetic Reynolds numbé@hf = 1, S = 1800). andgq takes only odd values. Note that we added an ampli-

tude correction to (4) so that the maximumigyj is always
+1. Only them = 1 mode is tested for instability here.

The effect of the magnetic Prandtl number on the growth  Figure 4 shows the dependence of the stability limits in
rate ofm = 1-7 is shown in Fig. 2. Again, the magneticterms of Lundquist numbers versus the belt latitude. Sets fo
Reynolds number was fixed &m = 10000. While we different configurations are shown; ‘A refers to the stail
foundm = 5 to be the most unstable mode fom = 1, a  of an antisymmetric flow, i.e,(6) = —u,.(7—0), ug(d) =
slight shift torn = 6 is found forPm = 0.1. The magnetic vy (r — 0), uy(0) = —uy(m — 6); ‘S’ refers to a symmetric

Prandtl number is another order of magnitude smaller in thgrturbation, i.eu, (8) = u, (7 — ), ug(0) = —ug(m —6),
Sun, and we expect the most easily excited mode to be ong(6) = u, (7 — ). We also varied the magnetic Prandtl
of m = 7 or 8, but definitely belown = 10. number fromPm = 0.1 to 10.

Finally, the most critical influence is that of the mag- All the sets show relatively little dependence on the lat-
netic Reynolds number, since the Rm of the simulations iside betweer80° and60° latitude. There is strongly in-
several orders of magnitudes below the value in the radiereased stability only at latitudes below latitudes16f.
tive interior of the Sun. Figure 3 shows again sets of growthhis is in line with the very small growth rates found by
rates versus azimuthal mode numberthis time for var- Dikpati et al. (2003) at latitudes below15° as is shown in
ious Rm. Pm was reset to unity. There is a trend towardseir Figure 11. We also find that the antisymmetric flows
lower m as Rm is increased. Modes higher than= 1 are more easily excited than symmetric flows at high lati-
make computations more difficult, and the fullset could tudes, i.e. above 40°. This again agrees with the findings
only be obtained up tBm = 14 000. A guess for the strong of Dikpati et al. (2003) who encountered significant growth
extrapolation to the very high solar Rm may faveur= 1 ratesfirstin the antisymmetria = 1 mode uponincreasing
for the most easily excited mode in the Sun. The tendencythfe magnetic field strength (they used a different symmetry
exciting slightly highemn for solar magnetic Prandtl num- definition and actually referred to that mode as being the
bers may not alter this result, but this is speculation. symmetric one).
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4 Toroidal combined with poloidal fields

The real environment in the solar tachocline will also in- = 1000
volve weak poloidal magnetic fields. This Section deals
with the change in stability limits for toroidal fields if the
are combined with a weak poloidal component.

In order to produce a consistent background magnetic
field with poloidal and toroidal components, we solve the
induction equation under the influence of a differentiahrot e
tion which has the simplified forft = Q. (1 — a2 cos? 9). MAGNETIC REYNOLDS NUMBER
A background poloidal magnetic field of a shape suggested
by Rudiger & Kitchatinov (1997) is subject to differentialFig. 5 Stability limit of a combination of toroidal and poloidal
rotation and provides us with a suitable toroidal magnetf@agnetic field versus magnetic Reynolds number Rm. The mag-
field. The axisymmetric induction equation for generating€tic Prandtl number Pm was unity.

T
|

LUNDQUIST NUMBER

the B, field is
oB 9 magnetic field belt. Slightly lower stability limits for hing
ot Vx(UxB+Ux By) +V'B, ®)  Jatitudes was found, as well as very (numerically unreach-
where ably) high stability limits for latitudes below0°, with lit-

r ] 3 tle dependence on latitude in between. The combination of
By = (2 cos § {1 - ] , sind [R_o - 2} 0> - (8 the toroidal fields with a poloidal field which is 100 times

. , weaker delivered a stabilizing effect, and the upper liimit
The poI0|d.aI background f|elq does not per!etrate the omﬁeéld storage in the tachocline is then near 1000 G. This
boundary, i.e. the boundary with the convection zone, as Wagn be considered an uoper limit. since the poloidal mag-
suggested by Rudiger et al. (2005). The problem reduces to bp ' b 9

solving them = 0 mode with ever in the potentialy (anti- netic field is supposed to be weaker in the tachocline than

symmetric magnetic field). The solution is steady-statd, arllg‘lb/100 (much less than 1 G, Rudiger et al. 2005). Our con-

we keepBy andV x (Be.) for the stability analysis. The clusion from Arlt et4a|. (2007) remains valid, that toroidal

: . . magnetic fields ol 0*-10°> G cannot be stored in the solar
resulting B, does not exceed the poloidal field as much as .
) ) - . achocline.
in the Sun, since we do not reach sufficiently high magnetic
Reynolds numbers. For that reason, we combine the resultknowledgements. AS thanks the Deutsche Forschungsgemein-
ing B, and its curl with the original poloidal magnetic fieldschaft for their support by grant No. Ru488/15-1. RF thaties t
at an arbitrary ratio for the stability analysis which is éonAstrophysikalisches Institut Potsdam for the hospitality
employing Egs. (2) and (1).
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