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Stability of the solar tachocline with magnetic fields
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The stability of magnetic fields in the solar tachocline is investigated. We present stability limits for higher azimuthal
wave numbers and results on the dependence of the stability on the location of toroidal magnetic fields in latitude. While
the dependence of the wave number with the largest growth rate on the magnetic field strength and the magnetic Prandtl
number is small, the dependence on the magnetic Reynolds number Rm indicates that lowest azimuthal modes are excited
for very high Rm. Upon varying the latitudinal position of the magnetic field belts, we find slightly lower stability limits
for high latitudes, and very large stability limits at latitudes below10◦, with little dependence on latitude in between. An
increase of the maximum possible field was achieved by addinga poloidal field. The upper limit for the toroidal field
which can be stored in the radiative tachocline is then 1000 G, compared to about 100 G for a purely toroidal field as was
found in an earlier work.
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1 Introduction

The paper is concerned with the magnetic stability of the
solar tachocline, which is the transition zone between the
convection zone with chiefly latitudinal gradients in angu-
lar velocity and the radiative core with nearly uniform ro-
tation. The thickness is roughly 4% of the solar radius. He-
lioseismology has confirmed the strong radial shear within
the tachocline and the fairly small radial extent of that zone
(e.g. Basu & Antia 2001).

A plausible formation mechanism for the tachocline of
magnetic origin was proposed by Rüdiger & Kitchatinov
(1997) and Gough & McIntyre (1998). The coupling of a
core magnetic field with the differential rotation in the ra-
diative interior below the convection zone leads to a thin
transition layer, thereby causing toroidal magnetic fieldsof
about 200 G. As a large class of solar dynamo models as-
sume the tachocline to be the seat of the solar dynamo (e.g.
Choudhuri & Gilman 1987; D’Silva & Choudhuri 1993),
the toroidal field strength of the belts should be of the order
of 105 G to give rise to the visible emergence of sunspots at
the surface at low latitudes.

An early stability analysis of the toroidal magnetic fields
in the solar case was done by Caligari et al. (1995) and was
followed up by Ferriz-Mas & Schüssler (1996). They used
a one-dimensional flux tube approximation and concluded
that the stability limit is in excess of104 G in the tachocline
as well as in the lower convection zone. In a different ap-
proach, nearly every toroidal magnetic field was found to be
unstable at zero rotation by Vandakurov (1972) and Tayler
(1973).
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A number of authors extended the 2-dimensional hydro-
dynamic formulation of Watson (1981) to include magnetic
fields (e.g. Gilman & Fox 1997; Gilman & Dikpati 2000;
Cally 2003; Cally et al. 2003; Dikpati et al. 2004). Most re-
cently, Arlt et al. (2007) have studied the MHD stability of
the lowest non-axisymmetric azimuthal mode in the solar
tachocline, with a full tachocline rotation profile. An up-
per limit for the toroidal magnetic field of about 100 G was
found.

It has been speculated that the true stability limits can
be identified only by studying higher azimuthal modes (1 <
m <∼ 10). Gilman & Dikpati (2000) have reported that com-
paratively higher azimuthal modes (m = 4 to 7) turn out
to be the most unstable ones if the thin toroidal magnetic
field belt is placed at mid-latitudes. The lowest azimuthal
modes, however, dominate when the field belt is placed at
very high or very low latitudes. Brun & Zahn (2006), in
their examination of the magnetic confinement of the so-
lar tachocline, found the tachocline becoming unstable with
a dominantm = 1 mode close to the pole, but higherm
modes can be seen to be present at slightly lower latitudes,
for a toroidal field build-up of roughly a few hundred Gauss.

In this Paper, we extend the analysis of Arlt et al. (2007)
in various directions. We compute growth rates for higher
azimuthal modes, show the dependence of the stability on
the field belt position in latitude, and present results from
combined toroidal and poloidal magnetic fields.

2 Stability analysis model

The numerical setup is that of a spherical shell, extend-
ing from the inner radiusRi = 0.6 to the outer radius
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Ro = 0.7. We are applying the spherical spectral MHD
code by Hollerbach (2000) for the computations. The code
solves the incompressible MHD equations in Boussinesq
approximation; we reduced the numerics to the solution of
the linearized induction and momentum equation for the
stability analysis of nonaxisymmetric perturbations in the
magnetic field,b, and the velocity field,u. The equations
are
∂u

∂t
= Rm

[

u×∇×U + U×∇×u−∇(u · U)
]

+

S
[

(∇×b)×B + (∇×B)×b
]

−
∇p + Pm△u, (1)

∂b

∂t
= ∇× (Rm U × b + S u × B) −△b. (2)

The axisymmetric background rotation velocity profile
U = (0, 0, r sin θΩ) is decoupled from the nonaxisym-
metric perturbations, as is the background magnetic
field B. The symbols r, θ, and φ have the usual
meanings of radius, colatitude, and longitude. Upon
making the equations non-dimensional, the magnetic
Reynolds numberRm = R2

oΩeq/η, the Lundquist num-
ber S = RoB0/

√
µρ η, and the magnetic Prandtl number

Pm = ν/η appear, withν andη being the microscopic vis-
cosity and magnetic diffusivity of the plasma, respectively,
Ωeq the equatorial angular velocity at the bottom of the con-
vection zone, andµ andρ the magnetic permeability and the
density, respectively. The rotation profile gives the axisym-
metric background velocity

U =
(

0, 0, r sin θ(1 − α2 cos2 θ)
)

, (3)

whereα2 describes the strength of the differential rotation.
The radial boundary conditions for the nonaxisymmet-

ric flow are stress-free. The magnetic field faces vacuum
conditions at both radial boundaries. The outer boundary is
the bottom of the convection zone which provides very high
magnetic diffusivity and is thus set to vacuum. The inner
boundary has no physical meaning; we still set this to vac-
uum, because we do not expect toroidal magnetic fields to
penetrate the solar core deeply (the condition setsbφ to zero)
and poloidal fields can extend into the core without building
up currents in the physically non-existing boundary.

The code employs Chebyshev polynomials of degrees
k for the radial decomposition and spherical harmonics of
degrees(l, m) for the horizontal decomposition. The quan-
tities which are decomposed spectrally are the potentialse,
f , g, andh forming u = ∇ × (e er) + ∇ × ∇ × (fer)
and B = ∇ × (ger) + ∇ × ∇ × (her) with er being
the radial unit vector. The typical spectral truncation wasat
40 Chebyshev polynomials and 80 Legendre polynomials,
while individual Fourier modes were evolved in this linear
analysis.

3 Toroidal magnetic fields

In Arlt et al. (2007), we reported that the solar tachocline
may be unstable for a field of roughly 100 G. We extend

Fig. 1 Dependence of the stability of various azimuthal modes
m on the magnetic field strength in terms of the Lundquist number
(Rm = 10 000, Pm = 1).

the linear computations to higher azimuthal modes and dif-
ferent locations of the magnetic field belt in latitude. The
differential rotation (α2) was fixed at 20%. This value is a
suitable choice for the upper boundary of the non-turbulent
tachocline. The results do not actually change very much for
small deviations ofα2 from the chosen value, as was shown
in Arlt et al. (2007).

The axisymmetric background magnetic fieldB =
(0, 0, Bφ) takes forms of

Bφ = B0 sinp θ cosq θ sin2

[

π

(

r − Ri

Ro − Ri

)4
]

, (4)

wherep andq control the position of the maximumBφ in
latitude. For the following subsections, we setp = 2 and
q = 1 resulting in a maximumBφ at a latitude of35◦ from
the equator. Since the investigated modes withm > 0 en-
tirely decouple from the axisymmetric state in the linearized
system, it is not essential for their stability that the back-
ground setup is in equilibrium.

3.1 Azimuthal modes withm > 1

Instead of searching for the stability limits of individualm
modes, the growth rates of the modes are computed and
compared at givenS in order to save computation time. We
suppose that the mode with the largest growth rate is also
the one which becomes unstable first. The growth rate here
is defined by the inverse e-folding time of the lowest latitu-
dinal mode(1, m).

Figure 1 shows the dependence of the growth rate on
the azimuthal mode numberm for various Lundquist num-
bers corresponding to various background field strengths.
The magnetic Reynolds number was fixed atRm = 10 000,
the magnetic Prandtl number wasPm = 1. There is a maxi-
mum in the set of growth rates atm = 5 for magnetic fields
aboveS ∼ 1500. There is nearly no dependence of the most
easily excited mode on the Lundquist number, provided the
growth rate is positive.
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Fig. 2 Dependence of the stability of various azimuthal modes
m on the magnetic Prandtl number (Rm = 10 000, S = 1800).

Fig. 3 Dependence of the stability of various azimuthal modes
m on the magnetic Reynolds number (Pm = 1, S = 1800).

The effect of the magnetic Prandtl number on the growth
rate ofm = 1–7 is shown in Fig. 2. Again, the magnetic
Reynolds number was fixed atRm = 10 000. While we
foundm = 5 to be the most unstable mode forPm = 1, a
slight shift tom = 6 is found forPm = 0.1. The magnetic
Prandtl number is another order of magnitude smaller in the
Sun, and we expect the most easily excited mode to be one
of m = 7 or 8, but definitely belowm = 10.

Finally, the most critical influence is that of the mag-
netic Reynolds number, since the Rm of the simulations is
several orders of magnitudes below the value in the radia-
tive interior of the Sun. Figure 3 shows again sets of growth
rates versus azimuthal mode numberm, this time for var-
ious Rm. Pm was reset to unity. There is a trend towards
lower m as Rm is increased. Modes higher thanm = 1
make computations more difficult, and the fullm-set could
only be obtained up toRm = 14 000. A guess for the strong
extrapolation to the very high solar Rm may favourm = 1
for the most easily excited mode in the Sun. The tendency of
exciting slightly higherm for solar magnetic Prandtl num-
bers may not alter this result, but this is speculation.

Fig. 4 Dependence of the stability on the position of the mag-
netic field belt in latitude. Stability lines for magnetic Prandtl num-
bers of 0.1, 1, and 10 are plotted. The symbols ‘A’ and ‘S’ refer to
the stability of antisymmetric and symmetric flow perturbations,
respectively. The fact that the critical Lundquist numbersfor lower
Pm are lower, does not mean the field in physical units is weaker,
since the Lundquist number changes withη−1 as does Pm.

3.2 Latitude dependence

The position of the maximumBφ in the previous Section
has always been at a latitude of35◦. We now vary the lat-
itude of the magnetic field belts by varyingp andq in (4).
The toroidal background field thus faces negative radialΩ
gradients at high latitudes and positive radialΩ gradients
at low latitudes. The range was fromp = 48 andq = 1
corresponding to a latitude of80.8◦ to p = 2, q = 21 cor-
responding to16◦ latitude, wherep takes only even values
andq takes only odd values. Note that we added an ampli-
tude correction to (4) so that the maximum ofBφ is always
±1. Only them = 1 mode is tested for instability here.

Figure 4 shows the dependence of the stability limits in
terms of Lundquist numbers versus the belt latitude. Sets for
different configurations are shown; ‘A’ refers to the stability
of an antisymmetric flow, i.e.ur(θ) = −ur(π−θ), uθ(θ) =
uθ(π − θ), uφ(θ) = −uφ(π − θ); ‘S’ refers to a symmetric
perturbation, i.e.ur(θ) = ur(π − θ), uθ(θ) = −uθ(π − θ),
uφ(θ) = uφ(π − θ). We also varied the magnetic Prandtl
number fromPm = 0.1 to 10.

All the sets show relatively little dependence on the lat-
itude between30◦ and60◦ latitude. There is strongly in-
creased stability only at latitudes below latitudes of10◦.
This is in line with the very small growth rates found by
Dikpati et al. (2003) at latitudes below∼15◦ as is shown in
their Figure 11. We also find that the antisymmetric flows
are more easily excited than symmetric flows at high lati-
tudes, i.e. above∼ 40◦. This again agrees with the findings
of Dikpati et al. (2003) who encountered significant growth
rates first in the antisymmetricm = 1 mode upon increasing
the magnetic field strength (they used a different symmetry
definition and actually referred to that mode as being the
symmetric one).
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4 Toroidal combined with poloidal fields

The real environment in the solar tachocline will also in-
volve weak poloidal magnetic fields. This Section deals
with the change in stability limits for toroidal fields if they
are combined with a weak poloidal component.

In order to produce a consistent background magnetic
field with poloidal and toroidal components, we solve the
induction equation under the influence of a differential rota-
tion which has the simplified formΩ = Ωeq(1−α2 cos2 θ).
A background poloidal magnetic field of a shape suggested
by Rüdiger & Kitchatinov (1997) is subject to differential
rotation and provides us with a suitable toroidal magnetic
field. The axisymmetric induction equation for generating
theBφ field is

∂B

∂t
= ∇× (U × B + U × B0) + ∇2

B, (5)

where

B0 =

(

2 cos θ

[

1 − r

Ro

]

, sin θ

[

3r

Ro

− 2

]

, 0

)

. (6)

The poloidal background field does not penetrate the outer
boundary, i.e. the boundary with the convection zone, as was
suggested by Rüdiger et al. (2005). The problem reduces to
solving them = 0 mode with evenl in the potentialg (anti-
symmetric magnetic field). The solution is steady-state, and
we keepBφ and∇× (Bφeφ) for the stability analysis. The
resultingBφ does not exceed the poloidal field as much as
in the Sun, since we do not reach sufficiently high magnetic
Reynolds numbers. For that reason, we combine the result-
ing Bφ and its curl with the original poloidal magnetic field
at an arbitrary ratio for the stability analysis which is done
employing Eqs. (2) and (1).

A ratio of Bφ/Bpol = 100 was adopted for the sta-
bility analysis. The dependence of the critical Lundquist
number on Rm is shown in Fig. 5 forPm = 1. Solar
magnetic Reynolds numbers in a radiative environment are
much higher than the maximum of 100 000 used here. We
have to extrapolate the Lundquist numbers to solar Rm in
the same way as was done by Arlt et al. (2007). The combi-
nation of a poloidal magnetic field with a consistently gen-
erated, 100 times stronger toroidal magnetic field yields a
stability limit of 980 G for the tachocline.

5 Conclusions

The stability analysis of Arlt et al. (2007) led to a stabil-
ity limit of about 100 G for purely toroidal magnetic fields
in the solar tachocline andm = 1 perturbations. Here we
extended the analysis to higher azimuthal modes and find
that in the radiative tachocline environment, very lowm
will be excited, withm = 1 probably being the most eas-
ily excitable. We also change the latitudinal position of the

Fig. 5 Stability limit of a combination of toroidal and poloidal
magnetic field versus magnetic Reynolds number Rm. The mag-
netic Prandtl number Pm was unity.

magnetic field belt. Slightly lower stability limits for high
latitudes was found, as well as very (numerically unreach-
ably) high stability limits for latitudes below10◦, with lit-
tle dependence on latitude in between. The combination of
the toroidal fields with a poloidal field which is 100 times
weaker delivered a stabilizing effect, and the upper limit for
field storage in the tachocline is then near 1000 G. This
can be considered an upper limit, since the poloidal mag-
netic field is supposed to be weaker in the tachocline than
Bφ/100 (much less than 1 G, Rüdiger et al. 2005). Our con-
clusion from Arlt et al. (2007) remains valid, that toroidal
magnetic fields of104–105 G cannot be stored in the solar
tachocline.
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